Model code of safe practice

Part 1

The selection, installation, inspection, and maintenance of electrical and non electrical apparatus in hazardous areas

8th Edition
The Energy Institute (EI) is the leading chartered professional membership body supporting individuals and organisations across the energy industry. With a combined membership of over 13,500 individuals and 300 companies in 100 countries, it provides an independent focal point for the energy community and a powerful voice to engage business and industry, government, academia and the public internationally.

As a Royal Charter organisation, the EI offers professional recognition and sustains personal career development through the accreditation and delivery of training courses, conferences and publications and networking opportunities. It also runs a highly valued technical work programme, comprising original independent research and investigations, and the provision of EI technical publications to provide the international industry with information and guidance on key current and future issues.

The EI promotes the safe, environmentally responsible and efficient supply and use of energy in all its forms and applications. In fulfilling this purpose the EI addresses the depth and breadth of energy and the energy system, from upstream and downstream hydrocarbons and other primary fuels and renewables, to power generation, transmission and distribution to sustainable development, demand side management and energy efficiency. Offering learning and networking opportunities to support career development, the EI provides a home to all those working in energy, and a scientific and technical reservoir of knowledge for industry.

This publication has been produced as a result of work carried out within the Technical Team of the EI, funded by the EI's Technical Partners. The EI's Technical Work Programme provides industry with cost-effective, value-adding knowledge on key current and future issues affecting those operating in the energy sector, both in the UK and internationally.

For further information, please visit http://www.energyinst.org

The EI gratefully acknowledges the financial contributions towards the scientific and technical programme from the following companies

- Agip (UK) Ltd
- Amerada Hess Ltd
- BG Group
- BHP Billiton Limited
- BP Exploration Operating Co Ltd
- BP Oil UK Ltd
- ChevronTexaco Ltd
- Conoco Limited
- Conoco UK Ltd
- Enterprise Oil plc
- ExxonMobil International Ltd
- Kerr-McGee North Sea (UK) Ltd
- Kuwait Petroleum International Ltd
- Murco Petroleum Ltd
- Phillips Petroleum Co. UK Ltd
- Shell UK Oil Products Limited
- Shell U.K. Exploration and Production Ltd
- Statoil (U.K.) Limited
- Talisman Energy (UK) Ltd
- Total E&P UK plc
- Total UK Limited

Copyright © 2010 by Energy Institute, London:
The Energy Institute is a professional membership body incorporated by Royal Charter 2003.
Registered charity number 1097899, England
All rights reserved

No part of this book may be reproduced by any means, or transmitted or translated into a machine language without the written permission of the publisher.

The Energy Institute cannot accept any responsibility, of whatsoever kind, for damage or loss, arising or otherwise occurring as a result of the application of the information contained in this publication.

ISBN 0 85293 558 3

Published by the Energy Institute

The information contained in this publication is provided as guidance only and while every reasonable care has been taken to ensure the accuracy of its contents, the Energy Institute cannot accept any responsibility for any action taken, or not taken, on the basis of this information. The Energy Institute shall not be liable to any person for any loss or damage which may arise from the use of any of the information contained in any of its publications.

Further copies can be obtained from: Portland Customer Services, Commerce Way, Whitehall Industrial Estate, Colchester CO2 8HP, UK.
t: +44 (0)1206 796 351 e: sales@portland-services.com

Electronic access to EI and IP publications is available via our website, www.energypublishing.org.
Documents can be purchased online as downloadable pdfs or on an annual subscription for single users and companies. For more information, contact the EI Publications Team.
e: pubs@energyinst.org
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>vii</td>
</tr>
<tr>
<td>1 Introduction and scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Hazardous area classification</td>
<td>2</td>
</tr>
<tr>
<td>2.1 General</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Classification of hazardous areas</td>
<td>3</td>
</tr>
<tr>
<td>2.2.1 Hazardous areas</td>
<td>3</td>
</tr>
<tr>
<td>2.2.2 The impact of apparatus with internal source(s) of release</td>
<td>5</td>
</tr>
<tr>
<td>2.2.3 The extent of hazardous areas</td>
<td>5</td>
</tr>
<tr>
<td>2.2.4 Hazardous area classification during maintenance work</td>
<td>5</td>
</tr>
<tr>
<td>3 Sources of ignition</td>
<td>7</td>
</tr>
<tr>
<td>3.1 General</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Sources of ignition</td>
<td>8</td>
</tr>
<tr>
<td>3.2.1 Fired heaters and furnaces</td>
<td>8</td>
</tr>
<tr>
<td>3.2.2 Flares</td>
<td>8</td>
</tr>
<tr>
<td>3.2.3 Vehicles - road and rail traffic</td>
<td>8</td>
</tr>
<tr>
<td>3.2.4 Fixed combustion engines</td>
<td>9</td>
</tr>
<tr>
<td>3.2.5 Gas turbine drives</td>
<td>11</td>
</tr>
<tr>
<td>3.2.6 Hot surfaces</td>
<td>12</td>
</tr>
<tr>
<td>3.2.7 Gas detectors - inherent risks</td>
<td>14</td>
</tr>
<tr>
<td>3.2.8 Pyrophoric ignition hazards</td>
<td>14</td>
</tr>
<tr>
<td>3.2.9 Electrostatic ignition hazard</td>
<td>15</td>
</tr>
<tr>
<td>3.2.10 Light metals</td>
<td>15</td>
</tr>
<tr>
<td>3.2.11 Radio frequency electromagnetic radiation</td>
<td>15</td>
</tr>
<tr>
<td>3.2.12 Electrical spark ignition</td>
<td>15</td>
</tr>
<tr>
<td>3.2.13 Ignition by fire extinguishing, fire suppression or inerting media</td>
<td>15</td>
</tr>
<tr>
<td>3.2.14 Other ignition sources</td>
<td>16</td>
</tr>
<tr>
<td>3.3 Use of gas detectors in hazardous areas</td>
<td>16</td>
</tr>
<tr>
<td>3.3.1 Use of gas detectors during maintenance</td>
<td>16</td>
</tr>
<tr>
<td>3.3.2 Use of gas detectors for work other than maintenance</td>
<td>17</td>
</tr>
<tr>
<td>3.3.3 Infra-red and other types of gas detectors</td>
<td>18</td>
</tr>
<tr>
<td>3.3.4 Reliability of fixed gas detection equipment</td>
<td>18</td>
</tr>
<tr>
<td>4 Hazardous area apparatus selection, installation, inspection,</td>
<td>20</td>
</tr>
<tr>
<td>maintenance and testing</td>
<td></td>
</tr>
<tr>
<td>4.1 General</td>
<td>20</td>
</tr>
<tr>
<td>4.2 Apparatus selection</td>
<td>21</td>
</tr>
<tr>
<td>4.2.1 Selection based on hazardous areas</td>
<td>21</td>
</tr>
<tr>
<td>4.2.2 Selection according to temperature classification ('T' class)</td>
<td>24</td>
</tr>
<tr>
<td>4.2.3 Selection according to grouping and sub-division</td>
<td>25</td>
</tr>
<tr>
<td>4.2.4 Suitability for environmental conditions</td>
<td>29</td>
</tr>
<tr>
<td>4.2.5 Other requirements</td>
<td>30</td>
</tr>
<tr>
<td>4.2.6 Apparatus with an internal source of release</td>
<td>30</td>
</tr>
<tr>
<td>4.2.7 Safeguards on fired process heaters</td>
<td>33</td>
</tr>
</tbody>
</table>
Contents

7 Storage tanks .. 78
 7.1 General .. 78
 7.2 Electrical safety requirements 78
 7.2.1 Hazardous area zoning ... 78
 7.2.2 Maintenance work procedures 79
 7.2.3 Specific electrical issues .. 79
 7.2.4 Reinstatement following maintenance 80
 7.3 Gas testing and measurements 80
 7.3.1 Gas testing .. 80

8 Temporary electrical supplies and equipment 82
 8.1 General ... 82
 8.2 Electric shock ... 82
 8.2.1 Shock currents ... 82
 8.2.2 Minimising the risk from electric shock 82
 8.3 Temporary illumination and electrical supplies 83
 8.3.1 Hazardous area considerations 83

Annexes:
 Annex A Glossary .. 86
 Annex B Summary of European ATEX Directives 90
 B.1 ATEX directive 95/94/EC .. 90
 B.1.1 Enactment dates ... 90
 B.1.2 The EPSR1996 .. 90
 B.1.3 Conformity assessment 91
 B.1.4 Conformity assessment 91
 B.1.5 CE marking .. 92
 B.1.6 Spare parts .. 93
 B.2 ATEX 137 Directive 92/99/EC (Workplace) 93
 B.2.1 Enactment dates ... 93
 B.2.2 DSEAR .. 93
 B.2.3 Offshore requirements .. 93
 B.2.4 Stipulated duties .. 94
 Annex C Ingress protection .. 96
 Annex D Selection of equipment for hazardous areas - relationship between design, zones and equipment choice 97
 Annex E Electrical system philosophy 98
 E.1 General system requirements for use in hazardous areas 98
 E.2 Earthing .. 98
 E.2.1 Protective multiple earthing (PME) systems 99
 E.2.2 IT (unearthed) systems 99
 E.2.3 Mixture of earthing systems 100
 E.3 Definition of load types 100
 E.4 Fire and gas detection ... 101
 E.5 Electrical supply protection 101
 Annex F Protection realised by active (instrumented) functions 102
 Annex G Existing apparatus and obsolete standards 104
 G.1 Pre-ATEX installations ... 104
 G.1.1 Superseded and withdrawn standards 104
 Annex H References .. 106
FOREWORD

This model code provides guidance on the selection, installation, inspection and maintenance of electrical and non-electrical equipment and systems in the petroleum industry in areas identified as hazardous using the methodology in Energy Institute (EI) Model code of safe practice Part 15 *Area classification code for installations handling flammable fluids* (EI15). It covers hydrocarbon processing, storage and distribution facilities. It provides a summary of the main technical and UK legal issues which equipment users need to address. It also discusses sources of ignition in apparatus other than explosion protected equipment.

This model code provides references to the relevant standards which provide greater detail on each individual topic. It is recognised that standards published by the International Electrotechnical Commission (IEC) are increasingly being used as the basis for a common approach to standardisation worldwide, and developed and offered for European Union adoption as Euronorms (EN). Differences may exist between an IEC standard and the corresponding EN standard, but the differences are often minor, if any. It is intended that technical aspects of this model code be applicable Europe-wide and Internationally as well as in the UK, but this code refers specifically to the UK legal position, though the legal position in other EU countries should be similar for issues governed by EU Directives. For these reasons, EU harmonised EN standards are given as the definitive references for explosion protected apparatus and its application; elsewhere, IEC standards are given as primary references. Where no EN standard or IEC standard exists, British standards (BS), industry guidance, or published papers are referenced. A full listing of standards reference in this Model code is included in Annex H.

The definitions included in Annex A are taken from EN or IEC standards where applicable, but in some instances the text has been clarified. The modified definitions apply to this publication only.

With respect to the 7th edition, the 8th edition of this model code contains new and additional guidance on the following topics:-

- UK legislation arising from the ATEX Directives
- Ignition sources, including those associated with non-electrical apparatus
- Non-electrical apparatus and the relevant standards
- Lightning protection
- Developments in the standards for Ex ‘n’ and Ex ‘e’ high voltage motors
- The use of risk based inspection (RBI) techniques in the inspection of Ex apparatus

The information contained in this publication is provided as guidance only and while every reasonable care has been taken to ensure the accuracy of its contents, the EI and the technical representatives listed in the Acknowledgements, cannot accept any responsibility for any action taken, or not taken, on the basis of this information. The EI shall not be liable to any person for any loss or damage which may arise from the use of any of the information contained in any of its publications.

The above disclaimer is not intended to restrict or exclude liability for death or personal injury caused by own negligence.

Suggested revisions are invited and should be submitted to the Technical Department, Energy Institute, 61 New Cavendish Street, London, W1G 7AR, e: technical@energyinst.org
ACKNOWLEDGEMENTS

This publication was prepared at the request of the EI Electrical Committee by Bernard Emery (consultant). It was subsequently reviewed and developed by the members of the Electrical Committee, at the time of publication comprising:

Phil Carpenter Chevron
Mel Cockerill Total Lindsey Oil Refinery
Duncan Crichton BP
Bob Denham Health & Safety Executive
Marijn Dumoulin Shell U.K. Limited
Martin Fleetwood Total U.K. Limited
Geoff Fulcher F.E.S. (Ex) limited
Kevin Hailes BP
Terry Hedgeland Consultant
Darren Hughes Petroplus Refining and Marketing Limited
Jeff McQueen Shell U.K. Oil Products Limited
Tom Ramsey ExxonMobil
Mark Scanlon EI
Andrew Sykes EI
Paul Taylor British Pipeline Agency Limited
Stephen Wilkinson ConocoPhillips

The EI wishes to record its appreciation of the work carried out by the members of the Electrical Committee and to recognise the contribution made by those individuals, companies and organisations that provided comments during technical review.

The EI also gratefully acknowledges the support and assistance given by the Health & Safety Executive (HSE) in the preparation and revision of this model code.

Technical editing and project coordination were undertaken by Andrew Sykes (EI).
1 INTRODUCTION AND SCOPE

This model code is aimed at providing an overview of the particular issues related to the selection, installation, inspection and maintenance of explosion-protected Ex certified electrical and non-electrical apparatus in the petroleum industry, specifically in areas where there is a possibility of occurrence of a flammable atmosphere. Guidance is given on the selection of such apparatus, together with installation, inspection and maintenance practices. Where more detailed guidance on specific topics exists, the relevant references are provided.

It also addresses earthing and bonding of electrical and non-electrical apparatus and its associated cabling and support structures in order to provide protection against electric shock, and against ignition hazards from apparatus which is not explosion-protected, electrostatic discharge, and also lightning protection in hazardous areas. Ignition sources are addressed, including those in apparatus which is not explosion-protected and the ignition hazards associated with circulating stray currents and cathodic protection systems, as are the hazards associated with temporary electrical supplies.

It is applicable to both onshore and offshore facilities. It is not applicable to mines, areas where explosives are manufactured, stored or handled and areas subject to flammable dusts and similar materials such as flammable fibres. It is closely associated with EI Model code of safe practice Part 15 Area classification code for installations handling flammable fluids (EI 15).

Emerging standardisation internationally, but particularly within Europe, is beginning to address the issues associated with ignition of flammable atmospheres by non-electrical sources such as hot surfaces. These ignition sources are discussed within this model code.