Minimum criteria to determine acceptability of additives for use in multi-product pipelines co-transporting jet fuel

3rd edition
EI 1535
MINIMUM CRITERIA TO DETERMINE ACCEPTABILITY OF ADDITIVES FOR USE IN MULTI-PRODUCT PIPELINES CO-TRANSPORTING JET FUEL

Third edition
October 2016

Published by
ENERGY INSTITUTE, LONDON
The Energy Institute is a professional membership body incorporated by Royal Charter 2003
Registered charity number 1097899
The Energy Institute (EI) is the chartered professional membership body for the energy industry, supporting over 23,000 individuals working in or studying energy and 250 energy companies worldwide. The EI provides learning and networking opportunities to support professional development, as well as professional recognition and technical and scientific knowledge resources on energy in all its forms and applications.

The EI’s purpose is to develop and disseminate knowledge, skills and good practice towards a safe, secure and sustainable energy system. In fulfilling this mission, the EI addresses the depth and breadth of the energy sector, from fuels and fuels distribution to health and safety, sustainability and the environment. It also informs policy by providing a platform for debate and scientifically-sound information on energy issues.

The EI is licensed by:
− the Engineering Council to award Chartered, Incorporated and Engineering Technician status;
− the Science Council to award Chartered Scientist status, and
− the Society for the Environment to award Chartered Environmentalist status.

It also offers its own Chartered Energy Engineer, Chartered Petroleum Engineer and Chartered Energy Manager titles.

A registered charity, the EI serves society with independence, professionalism and a wealth of expertise in all energy matters.

This publication has been produced as a result of work carried out within the Technical Team of the EI, funded by the EI’s Technical Partners. The EI’s Technical Work Programme provides industry with cost-effective, value-adding knowledge on key current and future issues affecting those operating in the energy sector, both in the UK and internationally.

For further information, please visit http://www.energyinst.org

The EI gratefully acknowledges the financial contributions towards the scientific and technical programme from the following companies

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Company Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP Exploration Operating Co Ltd</td>
<td>RWE npower</td>
</tr>
<tr>
<td>BP Oil UK Ltd</td>
<td>Saudi Aramco</td>
</tr>
<tr>
<td>Centrica</td>
<td>Scottish Power</td>
</tr>
<tr>
<td>Chevron</td>
<td>SGS</td>
</tr>
<tr>
<td>CLH</td>
<td>Shell UK Oil Products Limited</td>
</tr>
<tr>
<td>ConocoPhillips Ltd</td>
<td>Shell U.K. Exploration and Production Ltd</td>
</tr>
<tr>
<td>DCC Energy</td>
<td>SSE</td>
</tr>
<tr>
<td>DONG Energy</td>
<td>Statoil</td>
</tr>
<tr>
<td>EDF Energy</td>
<td>Statkraft</td>
</tr>
<tr>
<td>ENGIE</td>
<td>Talisman Sinopec Energy (UK) Ltd</td>
</tr>
<tr>
<td>ENI</td>
<td>Tesoro</td>
</tr>
<tr>
<td>E. ON UK</td>
<td>Total E&P UK Limited</td>
</tr>
<tr>
<td>ExxonMobil International Ltd</td>
<td>Total UK Limited</td>
</tr>
<tr>
<td>Kuwait Petroleum International Ltd</td>
<td>Tullow Oil</td>
</tr>
<tr>
<td>Maersk Oil North Sea UK Limited</td>
<td>Valero</td>
</tr>
<tr>
<td>Nexen</td>
<td>Vattenfall</td>
</tr>
<tr>
<td>Phillips 66</td>
<td>Vitol</td>
</tr>
<tr>
<td>Qatar Petroleum</td>
<td>World Fuel Services</td>
</tr>
</tbody>
</table>

However, it should be noted that the above organisations have not all been directly involved in the development of this publication, nor do they necessarily endorse its content.

Copyright © 2016 by the Energy Institute, London.
The Energy Institute is a professional membership body incorporated by Royal Charter 2003.
Registered charity number 1097899, England
All rights reserved

No part of this book may be reproduced by any means, or transmitted or translated into a machine language without the written permission of the publisher.

ISBN 978 0 85293 942 0

Published by the Energy Institute

The information contained in this publication is provided for general information purposes only. Whilst the Energy Institute and the contributors have applied reasonable care in developing this publication, no representations or warranties, express or implied, are made by the Energy Institute or any of the contributors concerning the applicability, suitability, accuracy or completeness of the information contained herein and the Energy Institute and the contributors accept no responsibility whatsoever for the use of this information. Neither the Energy Institute nor any of the contributors shall be liable in any way for any liability, loss, cost or damage incurred as a result of the receipt or use of the information contained herein.

Hard copy and electronic access to EI and IP publications is available via our website, https://publishing.energyinst.org. Documents can be purchased online as downloadable pdfs or on an annual subscription for single users and companies. For more information, contact the EI Publications Team.

e: pubs@energyinst.org
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal notices and disclaimers</td>
<td>4</td>
</tr>
<tr>
<td>Foreword</td>
<td>5</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>6</td>
</tr>
<tr>
<td>1 Introduction, purpose and scope</td>
<td>7</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Purpose</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Scope</td>
<td>8</td>
</tr>
<tr>
<td>2 Manufacturers’ information and additive listing</td>
<td>10</td>
</tr>
<tr>
<td>3 Laboratory screening</td>
<td>11</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>11</td>
</tr>
<tr>
<td>3.2 Screening tests</td>
<td>11</td>
</tr>
<tr>
<td>4 Water mapping screening for pipeline suitability</td>
<td>15</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td>4.2 Water mapping procedure</td>
<td>15</td>
</tr>
<tr>
<td>4.3 Test protocol</td>
<td>16</td>
</tr>
<tr>
<td>4.4 Data analysis/assessment</td>
<td>19</td>
</tr>
<tr>
<td>4.5 Water mapping precision</td>
<td>20</td>
</tr>
<tr>
<td>5 Considerations for pipeline operators and additive manufacturers – management of change</td>
<td>21</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>21</td>
</tr>
<tr>
<td>5.2 New additive introduction management of change</td>
<td>21</td>
</tr>
<tr>
<td>5.3 Sampling</td>
<td>22</td>
</tr>
<tr>
<td>5.4 Results and data recording</td>
<td>22</td>
</tr>
<tr>
<td>5.5 Testing and interpretation of results</td>
<td>23</td>
</tr>
<tr>
<td>5.6 Contra-indications</td>
<td>23</td>
</tr>
<tr>
<td>6 Summary</td>
<td>24</td>
</tr>
<tr>
<td>Annex A References</td>
<td>26</td>
</tr>
</tbody>
</table>
LEGAL NOTICES AND DISCLAIMERS

This publication has been prepared by the Energy Institute (EI) Aviation Committee.

The information contained in this publication is provided as guidance only, and although every effort has been made by the EI to assure the accuracy and reliability of its contents, THE EI MAKES NO GUARANTEE THAT THE INFORMATION HEREIN IS COMPLETE OR ERROR-FREE. ANY PERSON OR ENTITY MAKING ANY USE OF THE INFORMATION HEREIN DOES SO AT HIS/HER/ITS OWN RISK. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE INFORMATION HEREIN IS PROVIDED WITHOUT, AND THE EI HEREBY EXPRESSLY DISCLAIMS, ANY REPRESENTATION OR WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE EI BE LIABLE TO ANY PERSON, OR ENTITY USING OR RECEIVING THE INFORMATION HEREIN FOR ANY CONSEQUENTIAL, INCIDENTAL, PUNITIVE, INDIRECT OR SPECIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS), REGARDLESS OF THE BASIS OF SUCH LIABILITY, AND REGARDLESS OF WHETHER OR NOT THE EI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN FORESEEN.

The contents of this publication are not intended or designed to define or create legal rights or obligations, or set a legal standard of care.

The EI is not undertaking to meet the duties of manufacturers, purchasers, users and/or employers to warn and equip their employees and others concerning safety risks and precautions, nor is the EI undertaking any of the duties of manufacturers, purchasers, users and/or employers under local and regional laws and regulations. This information should not be used without first securing competent advice with respect to its suitability for any general or specific application, and all entities have an independent obligation to ascertain that their actions and practices are appropriate and suitable for each particular situation and to consult all applicable federal, state and local laws.

The EI HEREBY EXPRESSLY DISCLAIMS ANY LIABILITY OR RESPONSIBILITY FOR LOSS OR DAMAGE RESULTING FROM THE VIOLATION OF ANY LOCAL OR REGIONAL LAWS OR REGULATIONS WITH WHICH THIS PUBLICATION MAY CONFLICT.

Nothing contained in any EI publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

No reference made in this publication to any specific product or service constitutes or implies an endorsement, recommendation, or warranty thereof by the EI.

THE EI AND ITS AFFILIATES, REPRESENTATIVES, CONSULTANTS, AND CONTRACTORS AND THEIR RESPECTIVE PARENTS, SUBSIDIARIES, AFFILIATES, CONSULTANTS, OFFICERS, DIRECTORS, EMPLOYEES, REPRESENTATIVES, AND MEMBERS SHALL HAVE NO LIABILITY WHATSOEVER FOR, AND SHALL BE HELD HARMLESS AGAINST, ANY LIABILITY FOR ANY INJURIES, LOSSES OR DAMAGES OF ANY KIND, INCLUDING DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, OR PUNITIVE DAMAGES, TO PERSONS, INCLUDING PERSONAL INJURY OR DEATH, OR PROPERTY RESULTING IN WHOLE OR IN PART, DIRECTLY OR INDIRECTLY, FROM ACCEPTANCE, USE OR COMPLIANCE WITH THIS PUBLICATION.
FOREWORD

The first edition of this publication, developed in conjunction with the UK Petroleum Industry Association’s Pipeline Additive Working Group, was published in November 1997. Experience gained by operators using the document led to improvements incorporated in the second edition in 2001.

This third edition has been prepared by the EI’s Aviation Committee in conjunction with organisations having interests in the pipeline transfer of petroleum fuels and additive manufacturers.

The testing outlined in this publication is intended to provide risk management information for use in the assessment of new additives prior to their actual use in a pipeline. It describes the minimum information required from suppliers and shippers of additive-containing products in multi-product pipeline systems that co-transport jet fuel. It is intended to demonstrate to pipeline operators and other interested parties that these products will not subsequently adversely affect jet fuel, or have an adverse effect on pipeline operations as part of an ordered management of change process.

This publication is intended for use internationally by pipeline operators, fuel suppliers and additive companies who are involved in fuel supply through multi-product pipelines where jet fuel is co-transported with other distillate fuels, gasoline grades and clean fuel components.

The key changes included in this third edition are:

− A new procedure involving assessment of the impact on filter/water separator water removal performance of a candidate additive. This ‘water mapping screening’ provides a risk managed approach to assessing additive suitability by reference to known additive impact on EI 1581 5th edition filter/water separator performance.
− As part of the management of change process, guidance for additional sampling on first use of the new additive in a pipeline system.

For the purposes of demonstrating conformance to this publication the words ‘shall’, ‘should’ and ‘may’ are used to qualify certain requirements or actions. The specific meaning of these words is as follows:

− ‘shall’ is used when the provision is mandatory;
− ‘should’ is used when the provision is recommended as good practice, and
− ‘may’ is used where the provision is optional.

Although it is anticipated that this publication will assist those involved in fuel supply through multi-product pipelines, the information contained in this publication is provided as guidance only. Whilst every reasonable care has been taken to ensure the accuracy of its contents, the EI, and the technical representatives listed in the acknowledgements, cannot accept any responsibility for any action taken, or not taken, on the basis of this information. The EI shall not be liable to any person for any loss or damage which may arise from the use of any of the information contained in any of its publications.

Suggested revisions are invited and should be submitted to the

Technical Department
Energy Institute
61 New Cavendish Street
London,
W1G 7AR
e: technical@energyinst.org.
ACKNOWLEDGEMENTS

This third edition of this publication was prepared by Mr A Clifford and Dr A Kitson-Smith, representing Vitol Aviation, both of The Clouds Network Limited1, under the direction of the EI Supply Chain Fuel Quality Sub-Committee, comprising technical representatives of:

- Air BP Ltd
- Air TOTAL
- Airlines for America
- Chevron
- Compañía Logística de Hidrocarburos (CLH)
- ExxonMobil
- Kuwait Petroleum International Aviation Company Ltd.
- NATO Support Agency/CEPS Programme Office
- Phillips66
- SGS
- Shell Aviation Ltd.
- Tesoro
- TOTAL Aviation
- TRAPIL
- Vitol Aviation

Contributions to the drafting were also made by representatives of ExxonMobil Research & Engineering and Southwest Research Institute.

The EI wishes to record its appreciation of the work carried out by them.

A draft version of this third edition was reviewed by the following companies and organisations, who are thanked for providing technical feedback:

- AFTON Chemical
- Baker Hughes
- BASF
- Dorf Ketal Chemicals Pte Ltd
- Infineum
- Innospec
- MIRRICO
- NALCO
- PECOFacet

Project coordination and editing was undertaken by Martin Hunnybun (EI).

1 The Clouds Network Limited (Trading as CloudsNet). Teddington, TW11 8BH. United Kingdom. Contact: info@cloudsnet.co.uk
1 INTRODUCTION, PURPOSE AND SCOPE

1.1 INTRODUCTION

It is a requirement that operators ensure that product entering a pipeline system is handled in a manner that protects and preserves the quality of the certified batch. A batch is defined as a distinct quantity of fuel that can be characterised by one set of test results. It is essential that the batch is homogeneous so that test results are representative of the product sampled. As a general guide, homogeneity is defined primarily by density where the variation is less than 3.0 kg/m³ across the batch.

It is the responsibility of the supplier (shipper) of the product to submit product that complies fully with the specification, including ‘traceability’ where required. Note that jet fuel meeting Defence Standard 91-91 or Joint Inspection Group Aviation fuel quality requirements for jointly operated systems (AFQRJOS) Check List requires full traceability from point of manufacture.

Factors that can impact product specification parameters include, but are not limited to: interface migration and subsequent interface cutting; cross-contamination management; product sequencing and additives in co-transported products that may trail back or forward due to surfactant action or solubility effects.

These requirements are particularly relevant for jet fuel where positive segregation is lost during pipeline transportation (i.e in multi-product pipelines). Further information on the requirements for the manufacture and distribution of Aviation fuels can be found in EJ/JIG Standard 1530 Quality assurance requirements for the manufacture, storage and distribution of aviation fuels to airports.

This publication has been developed primarily for multi-product pipeline systems that co-transport jet fuel.

There has been a long history of the use of additives and more recently non-hydrocarbon components, in products transported through multi-product pipelines, including those approved by regulatory authorities. Historically, many of these had no formal ‘approval’ testing, but have been accepted on the basis of long-term trouble-free operation in terms of their impact on other co-transported fuels, e.g. the use of anti-oxidants in gasolines, middle distillate cold flow improvers and cetane improvers in distillate products.

Industry experience in the use of non-aviation approved (pipeline and ground fuel) corrosion inhibitors (CIs), and drag reducing additives (DRAs) demonstrates the need to prevent these additives impacting the quality of jet fuel. In addition, research work by the Coordinating Research Council² has demonstrated that the red marker dye used in many gas oil/diesel fuels worldwide can also have detrimental effects on the performance of jet fuel in aircraft where cross-contamination has occurred. Recent experience has even shown that apparently innocuous materials can be detrimental to jet fuel. As a general principle, additives should never be injected into the pipeline transport system during pumping of jet fuel unless the additive has been specifically approved for jet fuel use.

² CRC Report No. 639 Jet fuel contamination with diesel fuel dyes
Non-surface active additives can normally be satisfactorily controlled by interface cutting and additive injection control. Therefore, this publication is primarily directed at controlling surface active additives.

Pipeline operators generally require suppliers to be able to demonstrate that a new additive will not affect the quality of other products, particularly jet fuel, being transported within the pipeline system prior to actual pipeline use.

Therefore, the information generated in accordance with this publication should be used as part of a risk assessment that is undertaken to establish that no additional pipeline handling is required and ‘normal’ pipeline operation is appropriate. The basis of the risk analysis is a combination of laboratory testing of a potential contamination level in jet fuel and then a performance evaluation against a known reference surfactant. Management of change processes are recommended for initial use of the additive.

1.2 PURPOSE

This publication describes the evaluation of key considerations necessary for pipeline operators to determine the acceptability of specific additives in fuels transported through multi-product pipeline systems co-transporting jet fuel. The focus is potential harm to jet fuel properties from surfactant action. No additional warranty for the performance of any additive shall be inferred.

The objective is to enable additive manufacturers, fuel suppliers and pipeline operators to demonstrate to all concerned parties, including independent competent assessors, that a new additive contained in a fuel transported in the pipeline will not:

− adversely affect jet fuel being co-transported in the pipeline;
− have any adverse effects on the normal and long-term operation of the pipeline, or
− result in contamination of other products in the co-transport system.

Any contra-indications emerging from the assessment procedure described herein shall be fully investigated and appropriate action taken. The additive shall not be accepted for pipeline use pending the outcome of such investigation.

1.3 SCOPE

The objective of this publication is to define the minimum requirements for generating sufficient information to give an acceptable degree of confidence that a product containing a proposed new additive is suitable for transportation by multi-product pipeline that co-transport jet fuel.

This publication contains minimum requirements and recommendations for:

− Establishing a profile of relevant information from the additive manufacturer, including test methods and any previous pipeline experience, to assess its likely surface activity.
− A minimum regime of laboratory testing to demonstrate and assess the effect on key specification properties in jet fuel (where jet fuel is one of the fuel products co-transported.).
Water mapping screening to demonstrate that samples taken after transit through a multi-product pipeline, following a parcel of product containing this additive would exhibit no significant adverse effects due to the demonstrated control of surfactancy.

Management of change guidance for initial use of new additives in a pipeline system co-transporting jet fuel.

For further information on:
- recommended operating practices to minimise interface migration;
- product sequencing and interface cutting;
- sampling regimes and in-line monitoring equipment, and
- additive injection controls,

see EI/JIG 1530.

This publication is concerned with the potential adverse effects caused by additives present in non-aviation products on parcels of jet fuel.

The following classes of additive are generally excluded from the need for testing in accordance with this publication, on the basis that they have been used in multi-product pipelines for many years without issue in relation to trail-back (surfactancy) phenomena:

- middle distillate cold flow improvers – EVA type and wax anti-settling additives (WASA);
- marker dyes (e.g. Coumarin, Azo dyes);
- antioxidants;
- drag reducers;
- middle distillate cetane improvers, and
- metallic anti-knock additives in petrol.

Note: Marker dyes and drag reducers are known to have detrimental effects on aircraft engine operation. As part of risk management, any formulation changes or new chemistries should be evaluated for potential trail back.

These require application of specific injection controls where jet fuel is adjacent to the product containing PDR.