Design and operational guidance on cathodic protection of offshore structures, subsea installations and pipelines
ABOUT MTD LTD

The Marine Technology Directorate Limited (MTD Ltd) aims to promote, develop and advance, in the national interest, research, training and information dissemination in marine technology, including all aspects of engineering, science and technology relating to the exploration and exploitation of the sea.

MTD Ltd is an association of members having interests and capabilities in marine-related technology. They include industry, government, research establishments, academic and other learned institutions, and the Science and Engineering Research Council (SERC).

MTD Ltd advances marine research and development, primarily by means of its research activities in Higher Education Institutes and partly funded by SERC. MTD Ltd also provides an interface between such research and the requirements and expertise of its members. In 1989, MTD Ltd absorbed UEG, the research and information group for the offshore and underwater engineering industries, thereby expanding its interests to include multi-sponsor projects.

For further details, contact:
The Secretary
The Marine Technology Directorate Limited
19 Buckingham Street, London WC2N 6EF
Telephone 071-321 0674
Facsimile 071-930 4323
Design and operational guidance on cathodic protection of offshore structures, subsea installations and pipelines
Foreword

The project leading to this guidance document was undertaken by UEG with specialist authors under contract. It was funded jointly by the UK Department of Energy and UEG, and was completed and published by MTD Ltd as a part of the arrangements for MTD Ltd's absorption of UEG. At UEG, the Project Manager for the work was Mr J de Prey and at MTD Ltd, Mr R W Barrett. The Coordinating Editor for the project was Mr J N Wanklyn.

A Steering Group comprising potential users, specialists, section authors, the Department of Energy, UEG and then MTD Ltd, provided the forum for discussion and commented on the guidance document prior to publication. The Steering Group comprised:

Mr J A Bray (Chairman) Marine Technology Support Unit
Mr M D Allen Spencer & Partners
Mr B Balmer BP Exploration
Mr R W Barrett The Marine Technology Directorate Ltd
Mr J A Clarkson* Brown & Root Vickers Ltd
Dr R A Connell Shell UK Exploration & Production
Dr R F Crudwell Pasmimco Europe (Impalloy) Ltd
Mr J de Prey* UEG
Dr D Fairhurst BP International Ltd
Dr B V Johnson BP International Ltd
Mr M G Lunt Department of Energy
Mr D Shaw* John Brown Engineers & Constructors Ltd
Mr R J Simpson The Steel Construction Institute
Mr D Wilson* BUE Services Ltd

Section authors

Mr D Ames* Spencer & Partners
Dr V Ashworth Global Corrosion Consultants Ltd
Mr B Bell* J P Kenny & Partners Ltd
Mr P Gammage Brown & Root Vickers Ltd
Dr R P M Procter Corrosion & Protection Centre, UMIST
Professor K F Sander Consultant
Dr D Scantlebury Corrosion & Protection Centre, UMIST
Mr L Skilton John Brown Engineers & Constructors Ltd
Mr J L Tischuk Tischuk Enterprises
Mr J N Wanklyn Consultant
Mr G D Webb* J P Kenny & Partners Ltd
Mr N J M Wilkins Consultant
Mr B S Wyatt Corrosion Control Services

* No longer with this organisation

Every reasonable effort has been made to ensure that the guidance given in this publication is based on the best knowledge available up to the time of finalising the text. However, no responsibility of any kind for any injury, delay, loss or damage can be accepted by MTD Ltd, the UK Department of Energy or others involved in its publication. It is not intended for use as a mandatory or contractual document.
Contents

LIST OF ILLUSTRATIONS 8

LIST OF TABLES 10

NOTATION 11

PREFACE 13

1. INTRODUCTION 17

1.1 Background 17
1.2 Scope of the guidelines and suggestions for its use 17

2. PRINCIPLES OF CORROSION AND CATHODIC PROTECTION OFFSHORE 19

2.1 Introduction 21
2.2 Aqueous corrosion 21
2.3 Polarisation diagrams 24
2.4 Corrosion of steel in sea water and seabed mud 25
2.5 The principles of cathodic protection 29
2.6 The application of cathodic protection 31
2.7 Protection criteria 34
2.8 Operating current densities 35
2.9 Possible adverse effects of cathodic protection of steel 39
2.10 The need for uniform potential distribution 40

3. EFFECTS OF CATHODIC PROTECTION ON MECHANICAL PROPERTIES OF STEELS 41

3.1 Introduction 43
3.2 Environmentally-assisted cracking 43
3.3 Effects of cathodic protection on environmental cracking 45
3.4 Susceptible materials 46
3.5 Effects of cathodic protection on corrosion fatigue of low C-Mn steels 46
3.6 Effects of cathodic protection on hydrogen embrittlement of offshore materials 56

4. ORGANIC COATINGS AND CATHODIC PROTECTION 59

4.1 Introduction 61
4.2 Interaction of cathodic protection and coatings 63
4.3 Failure of coatings 64
4.4 Influence of rust and contamination at the interface 69
4.5 Shielding of anodes 70
4.6 Special coatings 70
4.7 Recent experience with coatings 71

Cathodic protection of offshore structures 5
5. CALCULATION AND MODELLING FOR THE DESIGN OF CATHODIC PROTECTION SYSTEMS

5.1 Introduction
5.2 "Traditional" design method
5.3 Formulation of the mathematical problem
5.4 The steel-sea water boundary
5.5 The mathematical model
5.6 Computational methods
5.7 Analogue models

6. CATHODIC PROTECTION SYSTEMS FOR STEEL OFFSHORE STRUCTURES

6.1 Introduction
6.2 Design objectives
6.3 General considerations
6.4 Carrying out the design
6.5 Engineering
6.6 Operating manual

7. CATHODIC PROTECTION SYSTEMS FOR CONCRETE OFFSHORE STRUCTURES

7.1 Introduction
7.2 The concrete environment
7.3 Corrosion of steel in concrete
7.4 Cathodic protection of steel in concrete
7.5 North sea experience
7.6 Conclusions

8. CATHODIC PROTECTION SYSTEMS FOR SUBSEA INSTALLATIONS AND PIPELINES

8.1 Overview of systems for submarine pipelines
8.2 The place of cathodic protection in pipeline design
8.3 Design requirement for pipelines
8.4 Anode materials
8.5 System design calculations
8.6 Anode design and attachment
8.7 Pipeline interfaces
8.8 Monitoring of pipeline cathodic protection
9. OPERATION, MONITORING AND SURVEYING OF CATHODIC PROTECTION SYSTEMS

9.1 Introduction
9.2 Design review
9.3 Initial or commissioning survey
9.4 Fixed monitoring systems
9.5 Periodic surveys
9.6 Assessment of requirements for modification or retrofit
9.7 Conclusions

10. STRUCTURAL ASPECTS OF CATHODIC PROTECTION

10.1 Introduction
10.2 Location of anodes on fixed steel platforms
10.3 Weight aspects of the cathodic protection system
10.4 Wave action and cathodic protection
10.5 Attachment details for anodes
10.6 Structural design of anodes

11. CURRENT LEGISLATION STANDARDS AND GUIDANCE DOCUMENTS

11.1 Legislation
11.2 Guidance documents
11.3 Key to the documents

12. REVIEW OF RECENT EXPERIENCE IN THE NORTH SEA

12.1 Introduction
12.2 Objectives
12.3 Procedure
12.4 Results
12.5 Discussion

REFERENCES

APPENDIX ESSENTIAL DESIGN INFORMATION
List of illustrations

Figure 1 Schematic representation of aqueous corrosion
Figure 2 Polarisation diagram schematically representing the electrochemistry of aqueous corrosion
Figure 3 Polarisation diagram representing control of corrosion rate by sluggish cathodic kinetics (in this case controlled by the rate of arrival of oxygen at the surface) and the effect of increasing oxygen availability
Figure 4 Corrosion profile of steel piling after 5 years exposure
Figure 5 Schematic diagram showing how corrosion can be reduced or scrapped, by applying cathodic protection
Figure 6 Representation of cathodic protection using zinc alloy sacrificial anodes on a structure in sea water
Figure 7 Sacrificial anodes installed on space frame structure prior to launch
Figure 8 Representation of impressed current cathodic protection using inert anode in sea water
Figure 9 Platinumised titanium impressed current anode installed on structure member prior to launch
Figure 10 The corrosion, cathodic protection and over-protection régimes expressed as a function of electrode potential
Figure 11 Schematic S-N curve
Figure 12 Basic S-N design curves for protected and unprotected welded tubular steel joints
Figure 13 Schematic fatigue crack growth rate curve
Figure 14 Effect of sea water on the fatigue crack growth rate of BS 4360 grade 50D steel
Figure 15 Effect of potential on the corrosion fatigue crack growth of BS 4360 grade 50D steel in sea water
Figure 16 S-N data for planar welded joints of BS 4360 grade 50D steel in air and in sea water without and with cathodic protection
Figure 17 Comparison of experimental S-N data for tubular welded joints with the design curve for protected joints
Figure 18 Curves of crack depth against percentage of fatigue life for planar and tubular welded specimens
Figure 19 Intact and well adherent coating
Figure 20 Well adherent coating with damage extending to the substrate
Figure 21 Damaged coating together with region of poor adhesion
Figure 22 Coating with region of poor adhesion resulting from application on to rusty surface
Figure 23 As Figure 20, following cathodic disbonding
Figure 24 As Figure 21, following cathodic disbonding
Figure 25 Current flow through a sacrificial anode
Figure 26 Measurement of electrochemical potential
Figure 27 Simulation of one-dimensional cell
Figure 28 Electrode potential plotted against current density, in sea water
Figure 29 Polarisation curves
Figure 30 Typical node on a tubular member
Figure 31 Single node on a tubular member
Figure 32 Resistance network to replace conducting electrolyte
Figure 33 Offshore structure zinc reference anode
Figure 34 Typical stand-off and flush-mounted anodes
Figure 35 Typical pore size distributions in cement paste (volume intruded by mercury under increasing pressure)
Figure 36 Schematic of pore system in concrete
Figure 37 Effective oxygen concentration profile through concrete cover, showing relative effects of water-filled and air-filled porosity
Figure 38 Effect of surface on transport of oxygen through cement paste
Figure 39 Influence of solution pH and potential (with and without presence of chloride ions) on corrosion of steel
Figure 40 Schematic of the effect of chloride on the anodic polarisation of steel in concrete
Figure 41 Schematic of the effect of limited oxygen availability on the cathodic polarisation of steel in concrete
Figure 42 Schematic of potentials of steel in concrete (free corrosion can only occur at a rate corresponding to the current where the curves intersect)
Figure 43 Current flow through concrete in air and in sea water
Figure 44 Schematic of couple between steel in sea water and steel in oxygen-depleted concrete
Figure 45 Schematic of couple between steel in sea water and passive steel in concrete
Figure 46 Typical optimisation of bracelet anode system
Figure 47 Performance of sacrificial anode materials in hot saline mud
Figure 48 Bracelet anodes for concrete-coated pipelines
Figure 49 Attenuation of pipe potential
Figure 50 Typical attachment of bracelet anode to concrete-coated pipe
Figure 51 Typical clamped, tapered bracelet anode
Figure 52 Proposed pipeline strip anode
Figure 53 Typical monobloc isolation joints for pipelines
Figure 54 Monitoring of pipeline cathodic protection system, using remotely-operated vehicle
Figure 55 Monitoring of pipeline cathodic protection system, using towed instruments
Figure 56 Potential survey - local point contact
Figure 57 Hard-wired dual reference electrode, zinc and silver/silver chloride elements
Figure 58 Acoustic-linked reference electrode/transponder for acoustic-linked monitoring system
Figure 59 Hard-wired monitored anodes
Figure 60 Approximate comparison of potentials using zinc, copper/copper sulphate, and silver/silver chloride reference electrodes
Figure 61 Correction for salinity when using silver/silver chloride electrodes in sea water
Figure 62 Micro-processor controlled monitoring system topside display unit - produces hard copy
Figure 63 Potential survey - topside metallic contact
Figure 64 Configuration of piles round steel jacket leg
Figure 65 Sections through jacket frame
Figure 66 Variation of sea water resistivity as a function of salinity and temperature
List of tables

Table 1 Estimated maximum corrosion rates of clean steel in North Sea water at 7°C
Table 2 Estimated maximum current density required to protect clean steel in North Sea water at 7°C
Table 3 Formulae used for calculation of anode resistance
Table 4 Information to be considered in performing cathodic protection design work
Table 5 Guidance on minimum design current densities for cathodic protection of bare steel
Table 6 Potential limits for cathodic protection of steel
Table 7 Principal advantages and disadvantage of sacrificial and impressed current systems
Table 8 Guide on coating breakdown criteria for cathodic protection
Table 9 Typical tabulation of surface areas, current requirements and anode weight requirements
Table 10 Typical sacrificial anode alloy characteristics at ambient temperatures (25°C)
Table 11 Impressed current anode performance characteristics
Table 12 North Sea structures and their installation dates
Table 13 General information from 1988 survey of platforms in UK waters
Table 14 Steel jackets
Table 15 Concrete structures
Table 16 Sacrificial anode systems
Table 17 Impressed current systems
Table 18 Hybrid systems
Table 19 Monitoring and surveys
Table 20 Electrical continuity
Table 21 System performance
Table 22 Effectiveness of system
Table 23 General comments
Table 24 Composition and properties of typical sacrificial anode alloys at ambient temperatures (up to 25°C)
Table 25 Potential limits for cathodic protection of steel
Table 26 Coating breakdown
Table 27 Compositional specifications for zinc
Table 28 Anode resistance Formulae
Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>fatigue damage summation failure limit</td>
</tr>
<tr>
<td>A</td>
<td>area</td>
</tr>
<tr>
<td>a</td>
<td>linear dimension, distance</td>
</tr>
<tr>
<td>b</td>
<td>linear dimension</td>
</tr>
<tr>
<td>b_f</td>
<td>final coating breakdown factor</td>
</tr>
<tr>
<td>b_m</td>
<td>mean coating breakdown factor</td>
</tr>
<tr>
<td>C_d</td>
<td>drag coefficient</td>
</tr>
<tr>
<td>C_f</td>
<td>final current density for protection of bare steel</td>
</tr>
<tr>
<td>C_i</td>
<td>inertia coefficient</td>
</tr>
<tr>
<td>C_{m}</td>
<td>mean current density (A/m^2) for protection of bare steel</td>
</tr>
<tr>
<td>D</td>
<td>outside diameter of pipeline</td>
</tr>
<tr>
<td>d</td>
<td>density of anode material</td>
</tr>
<tr>
<td>E</td>
<td>electrochemical potential</td>
</tr>
<tr>
<td>E_a</td>
<td>equilibrium anodic potential</td>
</tr>
<tr>
<td>E_c</td>
<td>equilibrium cathodic potential</td>
</tr>
<tr>
<td>E_{corr}</td>
<td>corrosion potential</td>
</tr>
<tr>
<td>E_p</td>
<td>polarised electrochemical potential</td>
</tr>
<tr>
<td>G</td>
<td>Electrical conductance of pipeline coating</td>
</tr>
<tr>
<td>I</td>
<td>electric current</td>
</tr>
<tr>
<td>I_{corr}</td>
<td>corrosion current</td>
</tr>
<tr>
<td>I_f</td>
<td>final current to be delivered by the cathodic protection system</td>
</tr>
<tr>
<td>I_{lim}</td>
<td>limiting current</td>
</tr>
<tr>
<td>I_m</td>
<td>mean current to be delivered by the cathodic protection system</td>
</tr>
<tr>
<td>I_p</td>
<td>polarised corrosion current</td>
</tr>
<tr>
<td>J_c</td>
<td>current density at steel surface</td>
</tr>
<tr>
<td>K</td>
<td>stress intensity</td>
</tr>
<tr>
<td>K_{fc}</td>
<td>fracture toughness</td>
</tr>
<tr>
<td>K_{th}</td>
<td>threshold stress intensity for stress corrosion cracking</td>
</tr>
<tr>
<td>L</td>
<td>length</td>
</tr>
<tr>
<td>l_a</td>
<td>anode length</td>
</tr>
<tr>
<td>l_p</td>
<td>distance from drain point to which pipe is protected</td>
</tr>
<tr>
<td>M</td>
<td>consumption rate of anode material</td>
</tr>
<tr>
<td>N</td>
<td>number of fatigue cycles to failure</td>
</tr>
<tr>
<td>N_1</td>
<td>number of cycles to failure under constant amplitude cyclic loading</td>
</tr>
<tr>
<td>P</td>
<td>periphery of anode</td>
</tr>
<tr>
<td>R</td>
<td>ratio of maximum and minimum steel thicknesses</td>
</tr>
<tr>
<td>R_a</td>
<td>anode resistance</td>
</tr>
<tr>
<td>R_p</td>
<td>longitudinal electrical resistance</td>
</tr>
<tr>
<td>r</td>
<td>radius</td>
</tr>
<tr>
<td>S</td>
<td>cyclic stress range</td>
</tr>
<tr>
<td>S</td>
<td>actual anode spacing</td>
</tr>
<tr>
<td>S_A</td>
<td>anode surface potential</td>
</tr>
<tr>
<td>S_c</td>
<td>cathode surface potential</td>
</tr>
<tr>
<td>S_i</td>
<td>anode spacing to meet maximum current requirements</td>
</tr>
<tr>
<td>S_{th}</td>
<td>stress range</td>
</tr>
<tr>
<td>S_M</td>
<td>anode spacing to meet mean current requirements</td>
</tr>
<tr>
<td>T</td>
<td>design life (h)</td>
</tr>
<tr>
<td>t</td>
<td>Unconsumed anode thickness</td>
</tr>
</tbody>
</table>

Cathodic protection of offshore structures
u utilisation factor
\(\bar{u} \) water particle velocity
\(\dot{\bar{u}} \) water particle acceleration
V volume of element
\(V_p \) potential
\(V_p' \) potential at point P
\(V_a \) anode material closed circuit potential
\(V_d \) pipe potential at drain point
\(V_o \) open circuit potential of unprotected steel
\(V_p^+ \) positive limit for adequate pipeline protection
\(V_{th} \) tension hill potential
W required net mass of anode material
w mass per anode
\(x \) gap between half shells of bracelet anode
\(\bar{Z} \) arithmetic mean of anode length and width
\(\Delta K_{th} \) cyclic stress intensity threshold
\(\eta \) overpotential
\(\rho \) resistivity
\(\delta \) density of sea water
Preface

The principles of cathodic protection were clearly understood and concisely expressed by Sir Humphrey Davy as long ago as 1824. At that time, Sir Humphrey was President of the Royal Society, and his attention had been drawn by the Navy Board to the rapid decay of the copper sheathing used as a cladding for the hulls of ships which were constructed of wood and consequently highly susceptible to penetration by "tersedos" (wood borers). In this connection, Volta had discovered, in 1800, a method of generating an electric current by means of a Voltaic Pile, and in 1832-1833 Faraday had put forward the 1st and 2nd laws of electrolysis. Both Volta's and Faraday's discoveries formed the basis for modern electrochemistry.

In his Bakerian lecture of 1806 Davy had advanced the hypothesis that "chemical attractions may be exalted, modified or destroyed by changes in the electrical state of bodies; that substances will only combine when they are in different electrical states; and that by bringing a body naturally positive artificially into a negative state its usual powers of combination are altogether destroyed". This statement summarises concisely the basic principles of cathodic protection.

In this paper to the Royal Society, which was read on 22 January 1824 Davy stated:

"Copper is a metal only weakly positive in the electro-chemical scale; and according to my ideas it would only act upon sea water when in the positive state; and, consequently if it could be rendered slightly negative the corroding action of sea water upon it would be nil".

Davy then points out that this statement would apply irrespective of the purity of the copper, and goes on to consider how it could be effected in practice. "I at first thought of using a Voltaic cell (Volta's original Voltaic pile consisted of alternate discs of copper and zinc separated by pieces of cloth and immersed in diluted sulphuric acid) but considered it hardly applicable in practice". He then tried various combinations of copper coupled to different metals and found that a piece of zinc as large as a pea or the point of a small iron nail was adequate to preserve to 40 or 50 square inches (260 or 320 cm²) of copper, irrespective of its geometrical form.

In this paper to the Royal Society, Davy stated that the Lord Commissioners of the Admiralty had given him permission to use ships of war to ascertain the practical value of his results, and the first ship to be cathodically protected was the HMS Samarang in which iron blocks were used successfully as anodes to protect the copper.

Thus Davy was responsible for establishing the principles of cathodic protection, and he was the first to use sacrificial anodes to protect another metal. He also foresaw the use of electrical power for protection, but his ideas at that time were in advance of technology.
Sacrificial anodes for protecting copper sheathing were used for only a relatively short time, and although the precise reason is not known it has to be remembered that it was about the time when the wooden hulls of warships were being replaced by wrought iron. Another view is that in preventing the corrosion of copper it also weakened its anti-fouling properties! Cathodic protection then became dormant for about 100 years until the early 1930s, when the oil companies in Texas used an impressed current system and scrap iron anodes to protect underground pipelines. Today, it is quite usual for the time interval between a discovery and its practical application to be only 10 to 20 years.

Control of the corrosion of North Sea offshore platforms by cathodic protection has resulted in the rejection of many well established principles based on experience gained in the protection of other structures. Thus it has been accepted that the most economical method of using it was in conjunction with a protective coating, and that it was more economical to use sacrificial anodes for small structures and impressed current for large.

To assess the position, the Cathodic Protection Study Group carried out by means of questionnaire a survey of the experience gained by the operators using sacrificial anodes (zinc or aluminium), impressed current or hybrid systems. All of them gave reasonable protection with the sacrificial anode system, which was the most popular, proving to be the most satisfactory. In the case of the impressed current system, the major problems were mechanical and electrical rather than inadequate current distribution, in particular, failure or operation resulting from disbonding of the cables. Only one operator used a paint coating, and it appeared that protection of the bare structure did not result in excessive consumption of anode material.

Over the years, and since the more widespread use of cathodic protection in the early 1930s for protecting underground pipes, there have been many developments in anode design and construction. In the case of impressed current systems, the use of graphite as a conducting anode material has declined with the development of composite anodes in which platinum is used economically in the form of a thin coating on either titanium or niobium.

As early as 1920, G Baum patented an anode (US Patent 1,477,009) consisting of tantalum partly coated with a thin layer of platinum for the anodic oxidation of sulphate to persulphate. In fact, many of the anodes used for impressed current cathodic protection originate from those used in previously in electrolytic oxidation processes (e.g. lead dioxide, magnetite, oxides of the platinum metals, etc).

In the case of sacrificial anodes, emphasis has been on the formulation of zinc, aluminium and magnesium alloys which give the most negative potential and maximum anode efficiency.
Although there have been a number of improvements in the technology of using cathodic protection, it needs to be emphasised that this also applies to other methods of corrosion control. An example is the Thames Flood Barrier, in which it had been envisaged that the conventional methods of coatings and cathodic protection would be used for all interior and exterior surfaces of steel in contact with Thames water. However, in the case of the rising sector gate, the use of anodes was precluded because of the very small distance of separation between the steel gate and the concrete sill which is about 225 mm where the gate is supported by the gate arm, decreasing to about only 100 mm at the centre.

For this reason, cathodic protection could not be used, and protection had to be confined to a thick coal-tar epoxy coating which was formulated to resist the highly abrasive conditions which occur by Thames water containing silt rushing through the gap when the gate is raised into the defence position. The barrier has been in service for about 5 years, and it is understood that has been very little deterioration in the steelwork.

It is made clear from the title that this guide is intended primarily for offshore structures, subsea installations and pipelines, and it is probably the most comprehensive single publication dealing with these topics. However, it is apparent to me after reading the page proofs that its scope is very wide indeed, and that it should be of value to all those who are concerned with the protection of steel structures in marine environments.

L.L. Shreir

Cathodic protection of offshore structures 15
1. Introduction

1.1 BACKGROUND

The project was undertaken in response to an initiative by the Department of Energy to build on the work of their Cathodic Protection Study Group (CPSG). That Group was set up by the Department to review the practice of cathodic protection on offshore oil and gas installations in UK waters, to consider the adequacy of existing standards and rules, to identify requirements for further information, and to advise on action required.

The CPSG sat from November 1979 until April 1982. It circulated an extensive questionnaire to all major offshore operators. Its conclusions reflected both the practices adopted and the degree of corrosion actually being experienced at that time.

A recommendation of the CPSG called for the production of a "comprehensive design and operation manual for cathodic protection systems for the North Sea". These guidelines are aimed at meeting that recommendation.

The guidelines were produced by a collaboration between specialist authors and members of the Project Steering Group. They included several who had participated in the original CPSG, others in possession of recent operational experience of CP in the North Sea, and potential users.

The objective is to provide, in a single, widely available document, practical guidance to designers and operational staff on the design, installation and operation of effective cathodic protection systems offshore. The guidelines are intended to be of use to engineers who are not CP specialists but who need familiarisation, also to be available as a source book for specialists.

1.2 SCOPE OF THE GUIDELINES AND SUGGESTIONS FOR THEIR USE

Three needs are answered by these guidelines.

First, they provide necessary background material for any engineer who encounters cathodic protection of offshore structures either directly or indirectly. Section 2 provides the link between the principles of corrosion and with the practical aspects. Section 9 provides guidance on the commissioning, operation, monitoring and surveying of CP systems.

Second, guidance is given to members of design teams through every step of the design process. All Sections refer to relevant documents, but Section 11 lists and comments on the principal documents containing current legislation, standards and guidance. Section 6 restates the fundamental design objective and discusses factors affecting the choice of design criteria. Section 7 describes the properties of concrete, leading to a discussion on the special features which characterise the electrochemical corrosion of steel embedded in concrete. The experience of nine operators of
concrete structures is presented, particularly on how CP system performance has compared with the original design. Section 8 reviews design requirements for the cathodic protection of subsea installation and pipelines. Section 10 discusses the effect of CP on the design of steel structures. Section 12 presents a review of existing CP design, operation and monitoring practice on North Sea and other UK waters oil and gas fixed steel platforms, utilising the results of a questionnaire updating the data collected originally by the CPSG.

Third, various aspects are addressed in detail. Section 3 covers the effects of CP on mechanical properties such as corrosion fatigue and hydrogen embrittlement. Section 4 covers organic coatings. Section 5 covers the calculation and modelling for the design of CP systems.