Titanium Alloys in Subsea and Offshore Production Systems

MTD Publication 96/100
TITANIUM ALLOYS IN

SUBSEA AND OFFSHORE

PRODUCTION SYSTEMS

Publication 96/100
FOREWORD

This report results from a survey, predominantly of oil companies, to assess industry's attitude to the use of titanium in offshore applications, and to identify whether research and development work is needed to address uncertainties relevant to its use in this general area.

The survey was jointly funded by The Marine Technology Directorate Limited (MTD) and the Health and Safety Executive. The work was performed under contract to MTD by Dr Carl Baxter (Carl Baxter and Associates) and Dr Roger King (Failure Control Ltd); the Project Manager at MTD was Mr Robert Barrett.

HSE's interests in the project were controlled by Mr Ken Woodward, and the work was monitored by Mr James Krol of the Marine Technology Support Unit (MaTSU).

ACKNOWLEDGMENTS

Assistance in the compilation and review of material data is gratefully acknowledged from the following:

Mr David Peacock Timet and The Titanium Information Group
Dr Reza Razmjoo The Welding Institute (TWI)
Mr Michael Gittos The Welding Institute (TWI)
Mr Ron Shutz RMI Titanium Co
CONTENTS LIST

FOREWORD

ACKNOWLEDGMENTS

1. **SUMMARY**

 1.1 Structure of the Report

 1.2 Research Requirements

2. **INTRODUCTION**

 2.1 Objective

 2.2 Methodology

 2.3 Background

3. **OVERVIEW OF TITANIUM**

 3.1 History

 3.2 Types of Titanium

 3.3 General Problems Relating to Offshore Use

 3.3.1 Corrosion

 3.3.2 Hydrogen Absorption

 3.3.3 Chemical Attack

 3.3.4 Galling

 3.3.5 Wear

 3.4 Product Availability

 3.5 Manufacturability

4. **CANDIDATE GRADES**

 4.1 Introduction

 4.2 Overview of Grades

 4.3 Titanium Usage

5. **OFFSHORE APPLICATIONS**

 5.1 Introduction

 5.2 Topsides Equipment

 5.3 Catenary Risers

 5.4 Rigid Risers

 5.4.1 Types

 5.4.2 Structural Behaviour

 5.4.3 Applications Suitable for Titanium

 5.5 Xmas Tree and Export Riser Jumpers

 5.6 Structural Stress Joints

 5.7 General Drilling and Completion Equipment

 5.7.1 General

 5.7.2 Tubing

 5.7.3 Drill Pipe

 5.7.4 Coiled Tubing

 5.7.5 Choke, Kill and Booster Lines

 5.8 Subsea Production Equipment

 5.8.1 Flowlines
6. RESULTS OF THE INDUSTRY SURVEY

6.1 Introduction
6.2 Analysis of Data
6.3 Results

6.3.1 Topsides Equipment
6.3.2 Drilling Riser Systems
6.3.3 Rigid Production and Export Risers
6.3.4 Catenary Risers
6.3.5 Completion Equipment
6.3.6 Subsea Production Equipment
6.3.7 Miscellaneous Uses
6.3.8 Other Applications

7. REVIEW OF EXISTING DATA

7.1 Introduction
7.2 Basic Material Properties
7.3 Corrosion Resistance
7.3.1 Seawater
7.3.2 Well and Process Fluids
7.4 Fatigue Resistance
7.4.1 Endurance (S-N) Data for Parent Unwelded Material
7.4.2 Endurance (S-N) Data for Weldments
7.4.3 Fatigue Crack Growth and Frequency Effects
7.5 Sour Conditions, Stray Cathodic Currents and Hydriding
7.6 Methanol Environments
7.6.1 Monotonic Loading
7.6.2 Cyclic Stressing

8. CURRENT RESEARCH & DEVELOPMENT

8.1 Commercial Research
8.1.1 SINTEF Joint Industry Project
8.1.2 Bunting Titanium/Birmingham University
8.1.3 Hunting Oilfield Services/SINTEF
8.1.4 RMI Titanium/Hydril
8.1.5 Stolt Comex Seaway
8.2 Research at British Universities
8.3 Other Relevant Work

9. RESEARCH REQUIREMENTS

9.1 Introduction
9.2 Applications and Alloys
9.2.1 Applications
9.2.2 Alloys
9.3 Allowable Stresses
9.4 Corrosion Properties
9.5 Fatigue and Fracture Properties 60
9.6 Stress Corrosion Cracking 60
9.7 Joining Processes 61
9.8 Non-Destructive Evaluation 62
9.9 Surface Treatments 62
9.10 Design Guidance for Catenary Risers 62
9.11 General Design Guidance 62

REFERENCES 63

APPENDIX 1 Questionnaire and Organisations approached 65

APPENDIX 2 Details of UK Academic Research 71

LIST OF ILLUSTRATIONS

Figure 4.1 'Family Tree' of ASTM Titanium Grades 19
Figure 5.1 Catenary Riser System 29
Figure 5.2 Rigid Tensioned Production Riser 29
Figure 5.3 Riser Tower 30
Figure 5.4 High Pressure Drilling Riser 30
Figure 5.5 Low Pressure Drilling Riser 31
Figure 5.6 Production Riser Taper Stress Joint 31
Figure 5.7 Tension Leg Taper Stress Joints 32
Figure 5.8 Coiled Tubing Unit 32
Figure 6.1 Survey Results for Topsides Systems 38
Figure 6.2 Survey Results for Drilling Riser Systems 38
Figure 6.3 Survey Results for Rigid Production & Export Riser Systems 39
Figure 6.4 Survey Results for Catenary Riser Systems 39
Figure 6.5 Survey Results for Completion Equipment 40
Figure 6.6 Survey Results for Subsea Production Equipment 40
Figure 6.7 Survey Results for Miscellaneous Equipment 41
Figure 7.1 Effect of Frequency on Corrosion Fatigue Crack Growth Behaviour of Ti-6Al-4V in Aqueous 0.6 M NaCl 52
Figure 7.2 Fatigue Crack Growth of β Annealed Ti-6Al-4V in 3.5% Aqueous NaCl 52
Figure 7.3 Fatigue Crack Growth of Mill Annealed Ti-6Al-4V in 3.5% Aqueous NaCl 53
Figure 7.4 Variation of the Critical Stress Intensity Factors with Hydrogen Content in Grade 12 Titanium Bar for Specimens with T-L Orientation 53
Figure 7.5 Variation of the Critical Stress Intensity Factors with Hydrogen Content in Grade 12 Titanium Bar for Specimens with L-T Orientation 54
Figure 7.6 Effect of HCl and Water Content on Time to Failure for Commercially Pure Titanium 54
Figure 7.7 Effect of Frequency on Fatigue Crack Growth of Ti-662 in Methanol/HCl Solutions 55
Figure 7.8 Effect of Chloride and Inhibitor on Fatigue Crack Growth of Ti-662 at 5 Hz in Methanol 55

Titanium Alloys Offshore (MTD 96/100)
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Galvanic potentials of various metals</td>
<td>15</td>
</tr>
<tr>
<td>4.1</td>
<td>Nominal mechanical properties of astm grades</td>
<td>18</td>
</tr>
<tr>
<td>4.2</td>
<td>Current & possible uses for various titanium alloys</td>
<td>20</td>
</tr>
</tbody>
</table>

Titanium Alloys Offshore (MTD 96/100)
1. SUMMARY

Historically titanium has been considered as a material of last resort in the offshore oil and gas industry because of the perception of a high initial price and service experience limited to a few niche applications. This view is now changing due to a reduction and stabilisation in world prices over the past few years together with the increased engineering challenges of deep water production and high pressure, high temperature well flows.

It is evident from activity in the titanium industry and from the replies received from oil companies during the survey reported here that there is growing interest in titanium for many uses. It already is well established for topsides heat exchangers and companies reported no problems in using it in this application. In Norway it is also widely used for firewater and ballast systems on platforms and Conoco has installed the first titanium drilling riser on the Heidrun field. The industry recognises that there are many other parts of deep water or high pressure, high temperature systems for which the metal has potential. It is also used for coiled tubing and downhole components, and is being developed for drill pipe sections for highly deviated wells.

Various oil company studies in the past have shown a potential benefit from using titanium for drilling risers in deep water such as West of Shetlands and in Norway. The material is also being studied by several oil companies as a replacement for reinforced hose currently used for catenary production risers in conditions that preclude the use of flexible pipe (i.e. high pressure, high temperature and/or sour fluids). As a result of the survey and recent activity in the industry, it appears that the main interest in the near future will be to use titanium for catenary riser systems where it is subjected to a wide range of fluids and fatigue loading.

Unlike steel and other conventional materials, which have had many years of research and development for use in offshore oil and gas production systems, titanium is comparatively new to the field. Steel will obviously remain the primary material for structures and piping, with other materials finding niches. Titanium is expected to be one of these 'niche' materials.

1.1 Structure of the Report

This report begins with a brief history of titanium and some of the main factors to be considered when using it in offshore oil and gas systems. It then looks in more detail at applications where titanium offers advantages and presents the results of a survey amongst oil companies on their opinions of the future use of the material.

The main grades are briefly reviewed and the most promising candidates for the various applications are identified. The current state of knowledge of the material relevant to its use offshore is reviewed and future research requirements have been derived.

1.2 Research Requirements

The main areas identified for research are:

- **Allowable Stresses:** Structural grades of titanium, like high strength steels, have a high yield to ultimate strength ratio. Current design codes specify a smaller allowable percentage of ultimate tensile strength than yield strength (typically 50% ultimate or 67% yield whichever is the smaller). This may be overconservative when designing with high strength materials. It is proposed to look at the build up of safety factors in relation to the mode of failure and reserve strength for specific applications.