Guidelines for the life extension for safe operation of ageing rotating equipment on offshore petroleum installations: Centrifugal compressors
Guidelines for the life extension for safe operation of ageing rotating equipment on offshore petroleum installations:
Centrifugal compressors
The Energy Institute (EI) is the leading chartered professional membership body supporting individuals and organisations across the energy industry. With a combined membership of over 14,000 individuals and 300 companies in 100 countries, it provides an independent focal point for the energy community and a powerful voice to engage business and industry, government, academia and the public internationally.

As a Royal Charter organisation, the EI offers professional recognition and sustains personal career development through the accreditation and delivery of training courses, conferences and publications and networking opportunities. It also runs a highly valued technical work programme, comprising original independent research and investigations, and the provision of EI technical publications to provide the international industry with information and guidance on key current and future issues.

The EI promotes the safe, environmentally responsible and efficient supply and use of energy in all its forms and applications. In fulfilling this purpose the EI addresses the depth and breadth of energy and the energy system, from upstream and downstream hydrocarbons and other primary fuels and renewables, to power generation, transmission and distribution to sustainable development, demand side management and energy efficiency. Offering learning and networking opportunities to support career development, the EI provides a home to all those working in energy, and a scientific and technical reservoir of knowledge for industry.

This publication has been produced as a result of work carried out within the Technical Team of the EI, funded by the EI’s Technical Partners. The EI’s Technical Work Programme provides industry with cost-effective, value-adding knowledge on key current and future issues affecting those operating in the energy sector, both in the UK and internationally.

For further information, please visit http://www.energyinst.org

The EI gratefully acknowledges the financial contributions towards the scientific and technical programme from the following companies:

- BG Group
- BP Exploration Operating Co Ltd
- BP Oil UK Ltd
- Centrica
- Chevron
- ConocoPhillips Ltd
- EDF Energy
- ENI
- E. ON UK
- ExxonMobil International Ltd
- International Power
- Kuwait Petroleum International Ltd
- Maersk Oil North Sea UK Limited
- Murphy Petroleum Ltd
- Nexen
- Phillips 66
- Premier Oil
- RWE npower
- Saudi Aramco
- Shell UK Oil Products Limited
- Shell U.K. Exploration and Production Ltd
- SSE
- Statoil
- Talisman Energy (UK) Ltd
- Total E&P UK Limited
- Total UK Limited
- Valero
- World Fuel Services

However, it should be noted that the above organisations have not all been directly involved in the development of this publication, nor do they necessarily endorse its content.

Copyright © 2012 by the Energy Institute, London.
The Energy Institute is a professional membership body incorporated by Royal Charter 2003.
Registered charity number 1097899, England
All rights reserved

No part of this book may be reproduced by any means, or transmitted or translated into a machine language without the written permission of the publisher.

ISBN 085293 641 2

Published by the Energy Institute

The information contained in this publication is provided for general information purposes only. Whilst the Energy Institute and the contributors have applied reasonable care in developing this publication, no representations or warranties, express or implied, are made by the Energy Institute or any of the contributors concerning the applicability, suitability, accuracy or completeness of the information contained herein and the Energy Institute and the contributors accept no responsibility whatsoever for the use of this information. Neither the Energy Institute nor any of the contributors shall be liable in any way for any liability, loss, cost or damage incurred as a result of the receipt or use of the information contained herein.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>3</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>4</td>
</tr>
<tr>
<td>1 Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 General</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Hydrocarbon releases from compressors</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Scope</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Application</td>
<td>8</td>
</tr>
<tr>
<td>2 Policy</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Company policy and its implementation</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Maintenance policy</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Inspection policy</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Continuous assessment</td>
<td>14</td>
</tr>
<tr>
<td>2.5 Background to information management</td>
<td>16</td>
</tr>
<tr>
<td>3 Management</td>
<td>17</td>
</tr>
<tr>
<td>3.1 Policy for addressing ageing</td>
<td>17</td>
</tr>
<tr>
<td>3.2 Organisation culture and competency</td>
<td>17</td>
</tr>
<tr>
<td>3.2.1 Competency</td>
<td>18</td>
</tr>
<tr>
<td>3.2.2 Central support engineers</td>
<td>18</td>
</tr>
<tr>
<td>3.2.3 Working with specialists</td>
<td>18</td>
</tr>
<tr>
<td>3.3 Revised procedures</td>
<td>18</td>
</tr>
<tr>
<td>3.4 Risk reduction priorities</td>
<td>19</td>
</tr>
<tr>
<td>4 Hazard identification and risk assessment</td>
<td>20</td>
</tr>
<tr>
<td>4.1 General</td>
<td>20</td>
</tr>
<tr>
<td>4.2 Hazard identification</td>
<td>20</td>
</tr>
<tr>
<td>4.3 Selection of structured review techniques</td>
<td>20</td>
</tr>
<tr>
<td>4.4 Assessment of risk</td>
<td>21</td>
</tr>
<tr>
<td>4.5 Risk reduction</td>
<td>21</td>
</tr>
<tr>
<td>5 Operational monitoring</td>
<td>22</td>
</tr>
<tr>
<td>5.1 Monitoring system</td>
<td>22</td>
</tr>
<tr>
<td>5.2 Collecting information</td>
<td>24</td>
</tr>
<tr>
<td>5.2.1 Data input</td>
<td>24</td>
</tr>
<tr>
<td>5.2.2 Auto data collection</td>
<td>24</td>
</tr>
<tr>
<td>5.2.3 Results</td>
<td>24</td>
</tr>
<tr>
<td>5.3 Audit</td>
<td>25</td>
</tr>
<tr>
<td>5.3.1 Reviewing performance</td>
<td>25</td>
</tr>
<tr>
<td>5.3.2 SCR verification of maintenance regimes</td>
<td>25</td>
</tr>
<tr>
<td>6 Inspection</td>
<td>26</td>
</tr>
<tr>
<td>6.1 Potential damage during operation</td>
<td>26</td>
</tr>
<tr>
<td>6.2 Normal major inspection regimes</td>
<td>26</td>
</tr>
<tr>
<td>6.3 Additional inspection for ageing compressors</td>
<td>27</td>
</tr>
<tr>
<td>6.4 Preparation for inspection</td>
<td>27</td>
</tr>
<tr>
<td>6.5 Inspection of selected component parts</td>
<td>28</td>
</tr>
<tr>
<td>6.5.1 Small bore tubing assemblies</td>
<td>28</td>
</tr>
</tbody>
</table>
GUIDELINES FOR THE LIFE EXTENSION FOR SAFE OPERATION OF AGEING ROTATING EQUIPMENT ON OFFSHORE PETROLEUM INSTALLATIONS:
CENTRIFUGAL COMPRESSORS

6.5.2 Flexible hose assemblies (FHA) ... 28

7 Fitness for continued service ... 29
7.1 Compressor continued service review process ... 29
7.1.1 Data collection ... 29
7.1.2 Review data .. 29
7.1.3 Define forward action .. 30
7.2 Review of specific components items .. 31
7.2.1 Compressor casings .. 31
7.2.2 Seal system fitness for purpose ... 32
7.2.3 Control systems ... 34
7.2.4 Anti-surge and capacity control ... 34

Annexes:
Annex A Abbreviations .. 36
Annex B References and Bibliography ... 37
Annex C Legislative context .. 40
Annex D Compressor boundary definition .. 42
Annex E Safety integrity level (SIL) for safety instrumented functions (SIF) 42
Annex F Inspection guidance ... 45
Annex G Degradation mechanisms ... 58
Annex H Performance equations and their significance 68
FOREWORD

The centrifugal compressor is one of a series of rotating machinery types that operators may seek to deploy beyond design life. This document aims to provide those involved in operation and maintenance of such equipment; including managers, designers, equipment manufacturers, and integrity and maintenance engineers, with good practice guidance on how to ensure that the integrity of centrifugal compressor equipment is retained when operated beyond its designed operational life.

This document was written and compiled under the direction of a joint industry Steering Group (SG) comprising personnel from a cross-section of UK offshore operators, original equipment manufacturers (OEM), relevant service companies, and Lloyd’s Register EMEA. The SG members provided input to the development via discussion at meetings, correspondence, individual contributions and with provision of industry experience and other selected information.

Although instigated by, and produced for, the UK offshore petroleum industry, guidance provided herein is regarded as being applicable to similar industries throughout the world. It may also be useful to those involved in related onshore terminal and process plants.

Note: In several places throughout, use has been made of examples which have been provided by members of the SG. Where these have been cited, it is implicit there are alternative ways and methods that other users may use to meet the same objective that may also constitute good practice. Therefore, these examples are provided for guidance only and should not be regarded as a recommendation or a standard.

This publication has been compiled for guidance only and while every reasonable care has been taken to ensure the accuracy and relevance of its contents, the Energy Institute, its sponsoring companies, the document writer and the Steering Group members listed in the Acknowledgements who have contributed to its preparation, cannot accept any responsibility for any action taken, or not taken, on the basis of this information. The Energy Institute shall not be liable to any person for any loss or damage which may arise from the use of any of the information contained in any of its publications.

These guidelines may be reviewed from time to time and it would be of considerable assistance for any future revision if users would send comments or suggestions for improvements to:

The Technical Department,
Energy Institute,
61 New Cavendish Street,
London
W1G 7AR
E: technical@energyinst.org.uk
ACKNOWLEDGEMENTS

This publication has been developed under the direction of a joint industry steering group (SG) comprised of volunteers representing field operators, original equipment manufacturers (OEM), the UK Health and Safety Executive (HSE) and companies engaged in specialist service activities. It has been compiled principally by Lloyd’s Register (EMEA) who has contributed to its development through provision of resource in kind with support from SG members. The Institute wishes to record its appreciation of the work carried out by the following:

Peter Davies Lloyds Register EMEA
Keith Hart (SG Chairman and editor) Consultant to the Energy Institute
Dr(Eng) Colin Hatchman (Secretary) Lloyds Register EMEA

The Energy Institute also wishes to record its appreciation of the support afforded by the following members of the group who provided valuable expertise through submission of materials, meeting attendance and general correspondence. In particular, those who submitted substantial contributions that were essential to the development of this publication were:

Andrew Canning Centrica plc
Huub de Bruijn Siemens Industrial Turbomachinery Ltd.
Barry Durrant BG Group
Niall Ewart BP
Graham Gibb Lloyds Register EMEA
Ken Innes Shell UK Ltd
Steve McGhie Total E&P (UK) Ltd
Dr(Eng) George Rae Conoco Phillips
Alan Smith Total E&P (UK) Ltd.
Joe Swann Dresser Rand

In addition, the Institute acknowledges contributions made by those who have provided input and guidance on the various draft documents which were issued during the development period and during meetings, workshops and via email correspondence:

John Gavin Quartzelec
Alan Gibson Nexen Petroleum UK Ltd
Keith Hassel Siemens Industrial Turbomachinery Ltd.
Iain Hibbert ABB Ltd
David Kenny ConocoPhillips
Geoff King Dresser-Rand (UK) Ltd
Siva Koppal Lloyds Register EMEA
Sam Rotheram Dresser-Rand (UK) Ltd/MSE
1 INTRODUCTION

1.1 GENERAL

These guidelines have been compiled to assist the operators of centrifugal gas compressor equipment with assessment of integrity to confirm fitness for purpose when required for service beyond its design life. This is consistent with a UK offshore oil and gas industry initiative in support of the findings of the UK BERR Report of the PILOT 2004 Brownfields Studies Maximising economic recovery of the UK’s oil and gas reserves.

This was an implicit recognition that the UK offshore infrastructure, which is approaching or has already reached, the end of its original design life, will either have to be replaced or procedures established and implemented to safely extend its operating life to the end of viable production. Hence there is the need for such critical equipment, especially on reaching the end of its original design life, to be subject to inspection programmes to ensure continued safe operation to the end of field production. Where deployed for offshore and coastal applications (i.e. in harsh marine environments), this issue has even greater importance.

Centrifugal compressors for hydrocarbon services are generally designed in accordance with API 617. This standard places expectations on manufacturers regarding minimum design life of equipment as follows:

‘The equipment (including auxiliaries) covered by this standard shall be designed and constructed for a minimum service life of 20 years and at least five years of uninterrupted operation. Note: It is recognized that this is a design criterion.’

It is also important to note that other design criteria, such as the need for mechanical rigidity, result in most compressors having a service life expectation which is much more than 20 years and also that machines which are exposed to particularly harsh operating conditions may require replacement or significant repair before 20 years have elapsed.

1.2 HYDROCARBON RELEASES FROM COMPRESSORS

Recent hydrocarbon releases data for the UK offshore industry are given in the HSE Research report RR672. The data are based on all recorded hydrocarbon releases between 1992/1993 and 2006/2007 and as such, are able to provide a reliable basis for their number, types and sources. Figure 1 shows the total number of releases including those that ignited during the same period. The graph shows that there has been a downward trend in total releases but the number of releases ignited per year has remained somewhat constant.

The leak data presented in Table 1 for gas compression system reflect leaks from the whole gas compression system, including small bore tubing assemblies and the equipment defined in Annex D as well as process pipework and equipment that is outwith the scope of this document.