A recommended fitness standard for the oil and gas industry
The Energy Institute (EI) is the leading chartered professional membership body supporting individuals and organisations across the energy industry. With a combined membership of over 13,500 individuals and 300 companies in 100 countries, it provides an independent focal point for the energy community and a powerful voice to engage business and industry, government, academia and the public internationally.

As a Royal Charter organisation, the EI offers professional recognition and sustains personal career development through the accreditation and delivery of training courses, conferences and publications and networking opportunities. It also runs a highly valued technical work programme, comprising original independent research and investigations, and the provision of EI technical publications to provide the international industry with information and guidance on key current and future issues.

The EI promotes the safe, environmentally responsible and efficient supply and use of energy in all its forms and applications. In fulfilling this purpose the EI addresses the depth and breadth of energy and the energy system, from upstream and downstream hydrocarbons and other primary fuels and renewables, to power generation, transmission and distribution to sustainable development, demand side management and energy efficiency. Offering learning and networking opportunities to support career development, the EI provides a home to all those working in energy, and a scientific and technical reservoir of knowledge for industry.

This publication has been produced as a result of work carried out within the Technical Team of the EI, funded by the EI’s Technical Partners. The EI’s Technical Work Programme provides industry with cost-effective, value-adding knowledge on key current and future issues affecting those operating in the energy sector, both in the UK and internationally.

For further information, please visit http://www.energyinst.org

The EI gratefully acknowledges the financial contributions towards the scientific and technical programme from the following companies:

- BG Group
- BP Exploration Operating Co Ltd
- BP Oil UK Ltd
- Centrica
- Chevron
- ConocoPhillips Ltd
- EDF Energy
- ENI
- E. ON UK
- ExxonMobil International Ltd
- Kuwait Petroleum International Ltd
- Maersk Oil North Sea UK Limited
- Murco Petroleum Ltd
- Nexen
- Saudi Aramco
- Shell UK Oil Products Limited
- Shell U.K. Exploration and Production Ltd
- Statoil Hydro
- Talisman Energy (UK) Ltd
- Total E&P UK plc
- Total UK Limited

Copyright © 2010 by the Energy Institute, London.
The Energy Institute is a professional membership body incorporated by Royal Charter 2003.
Registered charity number 1097899, England
All rights reserved

No part of this book may be reproduced by any means, or transmitted or translated into a machine language without the written permission of the publisher.

ISBN 978 0 85293 562 0

Published by the Energy Institute

The information contained in this publication is provided as guidance only and while every reasonable care has been taken to ensure the accuracy of its contents, the Energy Institute cannot accept any responsibility for any action taken, or not taken, on the basis of this information. The Energy Institute shall not be liable to any person for any loss or damage which may arise from the use of any of the information contained in any of its publications.

Further copies can be obtained from: Portland Customer Services, Commerce Way, Whitehall Industrial Estate, Colchester CO2 8HP, UK.
t: +44 (0)1206 796 351 e: sales@portland-services.com

Electronic access to EI and IP publications is available via our website, www.energypublishing.org.
Documents can be purchased online as downloadable pdfs or on an annual subscription for single users and companies.
For more information, contact the EI Publications Team.
e: pubs@energyinst.org
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>vii</td>
</tr>
<tr>
<td>1 Executive summary</td>
<td>1</td>
</tr>
<tr>
<td>2 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>3 General methods</td>
<td>9</td>
</tr>
<tr>
<td>4 Validation study</td>
<td>10</td>
</tr>
<tr>
<td>5 The essential tasks</td>
<td>11</td>
</tr>
<tr>
<td>6 Stair and ladder climbing</td>
<td>14</td>
</tr>
<tr>
<td>6.1 Stair climbing</td>
<td>15</td>
</tr>
<tr>
<td>6.1.1 Methods</td>
<td>15</td>
</tr>
<tr>
<td>6.1.2 Results</td>
<td>16</td>
</tr>
<tr>
<td>6.2 Ladder climbing</td>
<td>16</td>
</tr>
<tr>
<td>6.2.1 Methods</td>
<td>16</td>
</tr>
<tr>
<td>6.2.2 Results</td>
<td>17</td>
</tr>
<tr>
<td>7 Manual handling</td>
<td>20</td>
</tr>
<tr>
<td>7.1 Methods</td>
<td>21</td>
</tr>
<tr>
<td>7.2 Results</td>
<td>21</td>
</tr>
<tr>
<td>8 Valve turning</td>
<td>23</td>
</tr>
<tr>
<td>8.1 Methods</td>
<td>23</td>
</tr>
<tr>
<td>8.2 Results</td>
<td>26</td>
</tr>
<tr>
<td>8.2.1 Medium valve</td>
<td>26</td>
</tr>
<tr>
<td>8.2.2 Small valve</td>
<td>28</td>
</tr>
<tr>
<td>8.3 Aerobic demands of valve turning</td>
<td>30</td>
</tr>
<tr>
<td>9 Emergency response team (ERT)</td>
<td>31</td>
</tr>
<tr>
<td>9.1 ERT assessments</td>
<td>32</td>
</tr>
<tr>
<td>9.1.1 Ladder climbing</td>
<td>33</td>
</tr>
<tr>
<td>9.1.2 Trailer monitor</td>
<td>33</td>
</tr>
<tr>
<td>9.1.3 Stretcher carrying</td>
<td>35</td>
</tr>
<tr>
<td>9.1.4 Survival training</td>
<td>36</td>
</tr>
<tr>
<td>10 Recommended fitness test</td>
<td>37</td>
</tr>
<tr>
<td>11 Administration of the fitness tests</td>
<td>41</td>
</tr>
<tr>
<td>11.1 The Tecumseh step test</td>
<td>41</td>
</tr>
<tr>
<td>11.1.1 Equipment</td>
<td>41</td>
</tr>
<tr>
<td>11.1.2 Method</td>
<td>41</td>
</tr>
<tr>
<td>11.1.3 Pass criteria</td>
<td>41</td>
</tr>
</tbody>
</table>
11.2 Six minute walk test ... 42
 11.2.1 Equipment ... 42
 11.2.2 Method .. 42
 11.2.3 Pass criteria ... 42
11.3 Static arm strength .. 43
 11.3.1 Equipment ... 43
 11.3.2 Method .. 43
 11.3.3 Pass criteria ... 43
11.4 Grip strength and endurance ... 44
 11.4.1 Equipment ... 44
 11.4.2 Method .. 44
 11.4.3 Pass criteria ... 44
11.5 Manual handling 10 kg, and 25 kg loads 45
 11.5.1 Equipment ... 45
 11.5.2 Method .. 45
 11.5.3 Pass criteria ... 46
11.6 ERT simulation - rope haul ... 46
 11.6.1 Equipment ... 46
 11.6.2 Method .. 46
 11.6.3 Pass criteria ... 46
11.7 ERT simulation - hose roll-out .. 46
 11.7.1 Equipment ... 46
 11.7.2 Method .. 46
 11.7.3 Pass criteria ... 46

12 Implementing the fitness tests .. 47

13 Reviewing and amending the fitness standard 48

14 Considerations for further study... 49

15 References ... 50

Annexes:

Annex A Background to fitness testing .. 53
 A.1 Energy systems ... 53
 A.2 Tests of the energy systems 54
 A.2.1 The Tecumseh step test 55
 A.3 References ... 57

Annex B Descriptive statistics of the validation cohort with the original cohort,
 including Q2 results. .. 58
 B.1 Methods .. 58
 B.2 Results .. 59
 B.2.1 The Tecumseh step test and VO2max 59
 B.2.2 Arm strength and medium valve turning 60
 B.2.3 Right hand maximum grip strength and medium valve turning . 61
 B.2.4 Arm strength and small valve turning 62
 B.2.5 Left hand maximum grip strength and small valve turning . .63
Annex C Example of job evaluations – Brent Delta June 2008 65
C.1 BIS SALAMIS (company) supervisor .. 65
C.1.1 Scaffolding ... 65
C.1.2 Abseiling .. 65
C.2 Senior tool pusher .. 65
C.3 Drill Crews .. 66
C.4 Discussions with HSE engineer ... 68
C.5 Maintenance ... 68
C.6 Emergency response team (ERT) .. 68
C.7 General duties .. 68

Annex D Physical requirements for valve turning .. 69
D.1 Introduction .. 69
D.2 Force requirements .. 70
D.2.1 Force requirements – standards .. 70
D.2.2 Force requirements – open literature .. 72
D.2.3 Force requirements – other advice ... 75
D.2.4 Force requirements – as given by experienced valve operators ... 75
D.3 References .. 77

Annex E Training regimes to improve essential task performance 78
E.1 Muscular strength .. 78
E.1.1 Technique .. 80
E.1.1.1 Squats and half squats .. 80
E.1.1.2 Bent row .. 80
E.1.1.3 Lunges .. 81
E.1.1.4 Lateral raises to front raises to bicep curls 81
E.1.1.5 Calf raises .. 83
E.1.1.6 Shrugs .. 83
E.1.1.7 Triceps extension ... 83
E.1.1.8 Push-ups .. 84
E.1.1.9 Dumbbell side bend .. 84
E.1.1.10 Dumbbell wrist curls ... 84
E.1.1.11 Dumbbell wrist extensions .. 85
E.2 Aerobic fitness ... 85

Annex F Predicting maximal aerobic capacity 87
F.1 Bruce VO2max assessment .. 87
F.1.2 Tecumseh step test .. 88
F.2 Results ... 89
F.3 References .. 91

Annex G ECG and heart rate during helicopter underwater escape training (HUET) of novice trainees ... 92
G.1 Introduction .. 92
G.2 Methods ... 93
G.3 Results ... 93
G.4 Conclusions ... 95
G.5 References .. 96
FOREWORD

Fitness standards are becoming increasingly common practice in industry and the emergency services. Such standards are used by the police, fire and rescue services, the Royal National Lifeboat Institution and the military. The standards include measures of strength, endurance, anthropometrics, flexibility, motor skills and cardiac and metabolic fitness.

There are a number of benefits of introducing fitness standards to the workplace. By ensuring that an employee is physically capable of completing the essential tasks of the job to at least the minimum acceptable standard, the risk of employing physically unfit individuals in physically demanding jobs - and the associated human and economic effects e.g. through injury - are reduced. Furthermore, standards ensure selection is based solely on ability to complete tasks and is therefore fair and unbiased. This assessment based on capability also has implications for an ageing workforce, as individuals may wish to remain in employment beyond any arbitrary retirement age.

This report describes new work undertaken at the University of Portsmouth (Department of Sports Science and Exercise) for the EI’s Health Technical Committee. The report provides an introduction to fitness standards and goes on to make recommendations for minimum fitness standards for the oil and gas industry. Minimum standards have been evaluated for common critical tasks - with a significant physical fitness component - e.g. valve turning and ladder climbing. The evidence base for the standards is contained within the report as is guidance on administering the tests.

The report does not provide guidance on policy issues or implementation strategies as this is considered to be a matter for individual companies.

For broader guidance on managing the roles associated with tasks that place specific demands, physical or psychological, on employers, see OGP IPIECA guidelines on 'Fitness to work guidance for company and contractor health, HSE and HR professionals'.

1 Future publication, title correct October 2010. Visit OGP IPIECA website for further details.
ACKNOWLEDGEMENTS

The Energy Institute (EI) would like to acknowledge the significant work and efforts undertaken by the project team and authors from the Department of Sport and Exercise Science, University of Portsmouth, and express its appreciation of that work. In particular, the Institute wishes to thank Gemma Milligan, Dr. Jim House, Geoff Long and Professor Mike Tipton.

The authors would like to thank the following people and employees for their assistance with this project:

Energy Institute Health Technical Committee
Shell (UK) Limited
BP plc
ExxonMobil
Pat Weafer from Exxon-Mobil
Step Change in Safety Partnership
Petrofac Training
Oil & Gas UK (formerly UKOOA)
Bluewater Services (UK) Ltd
Chevron
Talisman Energy (UK) Ltd
Diamond Offshore Drilling (UK) Ltd
The Health and Safety Executive
The CAPITA Group plc
OIMs and crews of BRENDELTA, BLEO HOLME, and OCEAN NOMAD
Dr Dan Roiz de Sa, RDS Medical Ltd
Dr. David Salt, Dave Black, Nikki Ferguson and Steve Vance all from the University of Portsmouth
Carole Tipton
Dr Tara Reilly

This research was commissioned by the EI’s Health Technical Committee. Oil & Gas UK is acknowledged for providing a level of funding in support of this research.

The Institute would also like to acknowledge the valuable contributions of members of the Health Technical Committee in steering this project to completion. Furthermore, the EI extends its gratitude to the companies and individuals that took part in this study without which this project would not have been possible.

The information contained in this publication is provided as guidance only, and while every reasonable care has been taken to ensure the accuracy of its contents, the EI and the representatives listed in the Acknowledgements, cannot accept any responsibility for any actions taken, or not taken, on the basis of this information. The EI shall not be liable to any person for any loss or damage that may arise from the use of any of the information contained in any of its publications.
2 INTRODUCTION

The University of Portsmouth was contracted (research project 27100 H603) by the Energy Institute (EI) to develop and recommend a suitable fitness standard for the Oil and Gas Industry (OGI) according to the following terms of reference:

i. Review the offshore and onshore tasks requiring a significant physical fitness component (task analysis).
ii. Determine the importance of the physically demanding tasks and identify those which are essential (common critical tasks) for success and safe work (task assessment).
iii. Establish the method of best practice (technique, MOBP) for undertaking the essential tasks.
iv. Establish and agree the minimum performance standard for the essential tasks (task performance) when performed using the MOBP.
v. Assess the physical and physiological demands of these tasks (task quantification).
vi. Design a simple-to-administer minimum fitness standard for the OGI.
vii. Advise on fitness regimes to assist OGI in achieving the minimum acceptable level of fitness.
viii. Validate the work undertaken in i. to vi. (initiated in March 2009).

Fitness standards are becoming common practice within industry and the emergency services. Such standards are used by the police, fire and rescue services, the Royal National Lifeboat Institution and the military (Stevenson et al., 1992; Rayson et al., 2000; Anderson et al., 2001; Allsopp et al., 2003; Reilly and Tipton, 2005). The standards include measures of strength, endurance, anthropometrics, flexibility, motor skills and cardiac and metabolic fitness.

The reasons for introducing fitness standards into the workplace are to:
- Minimise the potential for employing physically unfit individuals in physically demanding jobs; this can turn out to be costly, both in human and economic terms.
- Ensure that an employee is physically capable of completing the essential tasks of the job to at least the minimum acceptable standard, and provide employees and potential employees with a target to reach and sustain.
- Decrease the potential for injury, thereby providing a ‘duty of care’ for all employees.
- Ensure selection is based solely on ability to complete the task and is therefore fair, unbiased and gender free.
- Base retirement age on capability rather than an arbitrary age.
- Provide feedback on rehabilitation and return to work.
- Encourage self-training, self evaluation and a healthier lifestyle.
- Increase confidence of individuals and teams.

By setting a valid minimum fitness standard, employers should maximise the number of employees who are able to complete the essential tasks. If the standards are too low, employers will increasingly recruit individuals who are incapable of meeting the job demands. If they are too high, a proportion of individuals will be rejected, who would have been capable of doing the job. Therefore, a minimum standard should select, as accurately as possible, individuals who can perform at least to the minimum requirement of the essential tasks of the specified job.
To be valid and defensible, a fitness standard should be based on the most common (generic) tasks that are essential for operational performance of the job. These are defined as the most physically demanding, essential (i.e. critical and generic) components of the job. These tasks are identified by evaluating an occupation to determine the frequency, importance and nature of the tasks involved. Therefore, the following requirements are fundamental to the establishment of a minimum fitness standard:

- The physical tasks should be generic and essential to the successful completion of the job.
- The MOBP to undertake each task must be established and sanctioned by the employer.
- A minimum acceptable level of performance for each generic, essential task must be established and sanctioned by the employer.
- The physical demands of performing the essential tasks, using the MOBP, to the minimum acceptable level should be established and used as the basis for the fitness standard (see Annexes A and F).

The tests that constitute a fitness standard can be direct simulations of a task, in which case simple pass/fail criteria can be applied. If it is not possible to use a simulation (too difficult/expensive to set up), simple to measure tests that predict performance on the essential task can be developed. These PST can also be used to ensure that individuals are fit enough to undertake the fitness tests that employ simulations (Reilly et al., 1979; Arnold et al., 1982; Jackson and Osburn, 1984).

Two consequences arise from the fact that no prediction is perfect. Firstly, statistical analyses have to be used with PST to determine the strength of the relationship and thus, accuracy of the prediction. Secondly, simple pass/fail criteria should not be used. Instead, the inaccuracies inherent in the PST are accommodated by the inclusion of a ‘borderline’ category. The divisions between pass/borderline/fail are determined by calculating prediction intervals (Reilly et al., 2005).

Once developed, a fitness test should be validated in a separate study with a different group of volunteers to ensure that the tests are reproducible and generally applicable (Reilly et al., 1979; Washburn and Safrit, 1982; Rayson et al., 2000).