Guidance on applying inherent safety in design: Reducing process safety hazards whilst optimising CAPEX and OPEX

2nd edition
GUIDANCE ON APPLYING INHERENT SAFETY IN DESIGN:
REDUCING PROCESS SAFETY HAZARDS WHILST OPTIMISING CAPEX AND OPEX

2nd edition

August 2014
The Energy Institute (EI) is the chartered professional membership body for the energy industry, supporting over 16 000 individuals working in or studying energy and 250 energy companies worldwide. The EI provides learning and networking opportunities to support professional development, as well as professional recognition and technical and scientific knowledge resources on energy in all its forms and applications.

The EI’s purpose is to develop and disseminate knowledge, skills and good practice towards a safe, secure and sustainable energy system. In fulfilling this mission, the EI addresses the depth and breadth of the energy sector, from fuels and fuels distribution to health and safety, sustainability and the environment. It also informs policy by providing a platform for debate and scientifically-sound information on energy issues.

The EI is licensed by:
− the Engineering Council to award Chartered, Incorporated and Engineering Technician status;
− the Science Council to award Chartered Scientist status, and
− the Society for the Environment to award Chartered Environmentalist status.

It also offers its own Chartered Energy Engineer, Chartered Petroleum Engineer and Chartered Energy Manager titles.

A registered charity, the EI serves society with independence, professionalism and a wealth of expertise in all energy matters.

This publication has been produced as a result of work carried out within the Technical Team of the EI, funded by the EI’s Technical Partners. The EI’s Technical Work Programme provides industry with cost-effective, value-adding knowledge on key current and future issues affecting those operating in the energy sector, both in the UK and internationally.

For further information, please visit http://www.energyinst.org

The EI gratefully acknowledges the financial contributions towards the scientific and technical programme from the following companies:

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG Group</td>
<td>Premier Oil</td>
</tr>
<tr>
<td>BP Exploration Operating Co Ltd</td>
<td>RWE npower</td>
</tr>
<tr>
<td>BP Oil UK Ltd</td>
<td>Saudi Aramco</td>
</tr>
<tr>
<td>Centrica</td>
<td>SGS</td>
</tr>
<tr>
<td>Chevron</td>
<td>Shell UK Oil Products Limited</td>
</tr>
<tr>
<td>ConocoPhillips Ltd</td>
<td>Shell U.K. Exploration and Production Ltd</td>
</tr>
<tr>
<td>Dana Petroleum</td>
<td>SSE</td>
</tr>
<tr>
<td>Dong Energy</td>
<td>Statkraft</td>
</tr>
<tr>
<td>EDF Energy</td>
<td>Statoil</td>
</tr>
<tr>
<td>ENI</td>
<td>Talisman Sinopec Energy UK Ltd</td>
</tr>
<tr>
<td>E.ON UK</td>
<td>Total E&P UK Limited</td>
</tr>
<tr>
<td>ExxonMobil International Ltd</td>
<td>Total UK Limited</td>
</tr>
<tr>
<td>International Power</td>
<td>Tullow</td>
</tr>
<tr>
<td>Kuwait Petroleum International Ltd</td>
<td>Valero</td>
</tr>
<tr>
<td>Maersk Oil North Sea UK Limited</td>
<td>Vattenfall</td>
</tr>
<tr>
<td>Murco Petroleum Ltd</td>
<td>Vitol</td>
</tr>
<tr>
<td>Nexen</td>
<td>World Fuel Services</td>
</tr>
</tbody>
</table>

However, it should be noted that the above organisations have not all been directly involved in the development of this publication, nor do they necessarily endorse its content.

Copyright © 2014 by the Energy Institute, London.

The Energy Institute is a professional membership body incorporated by Royal Charter 2003.
Registered charity number 1097899, England
All rights reserved

No part of this book may be reproduced by any means, or transmitted or translated into a machine language without the written permission of the publisher.

ISBN 978 0 85293 689 4

Published by the Energy Institute

The information contained in this publication is provided for general information purposes only. Whilst the Energy Institute and the contributors have applied reasonable care in developing this publication, no representations or warranties, express or implied, are made by the Energy Institute or any of the contributors concerning the applicability, suitability, accuracy or completeness of the information contained herein and the Energy Institute and the contributors accept no responsibility whatsoever for the use of this information. Neither the Energy Institute nor any of the contributors shall be liable in any way for any liability, loss, cost or damage incurred as a result of the receipt or use of the information contained herein.

Electronic access to EI and IP publications is available via our website, www.energypublishing.org. Documents can be purchased online as downloadable pdfs or on an annual subscription for single users and companies. For more information, contact the EI Publications Team.

e: pubs@energyinst.org
CONTENTS

Foreword ... 5
Acknowledgements ... 6

1 Introduction ... 7
 1.1 What is inherent safety? 7
 1.2 Scope .. 7
 1.3 Application .. 8
 1.4 Inherent safety principles 8
 1.5 Hierarchy of controls .. 9
 1.6 Application to human factors 10
 1.7 Barriers to inherent safety 11
 1.8 Potential pitfalls .. 12

2 Benefits of inherent safety in design 13
 2.1 Reducing hazards and CAPEX/OPEX 13
 2.2 Compliance with legislation 14

3 Role of project leaders .. 15

4 Applying inherent safety in design 16
 4.1 Introduction ... 16
 4.2 Conceptual design stage 17
 4.3 Front-end engineering design stage 22
 4.4 Process design stage 22
 4.5 Engineering design stage 23

5 Documentation .. 25

Annexes

Annex A Application of IS hierarchy of controls: An example ... 27
Annex B Inherent safety in design stages flowchart 28
Annex C Process for conducting inherent safety workshop 29
Annex D Glossaries of terms, and abbreviations and acronyms 30
 D.1 Introduction ... 30
 D.2 Glossary of terms ... 30
 D.3 Glossary of abbreviations and acronyms 35

Annex E References ... 36

Tables
Table 1 Inherent safety principles 8
Table 2 Example of IS applied to human failure 11
Table 3 Example of IS reducing CAPEX/OPEX 16
GUIDANCE ON APPLYING INHERENT SAFETY IN DESIGN: REDUCING PROCESS SAFETY HAZARDS WHILST OPTIMISING CAPEX AND OPEX

Contents continued...

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4</td>
<td>Example of IS applied during conceptual design stage</td>
<td>17</td>
</tr>
<tr>
<td>Table 5</td>
<td>IS workshop record</td>
<td>19</td>
</tr>
<tr>
<td>Table 6</td>
<td>Examples of IS applied to construction</td>
<td>20</td>
</tr>
<tr>
<td>Table 7</td>
<td>Example of IS applied to inspection</td>
<td>21</td>
</tr>
<tr>
<td>Table 8</td>
<td>Example of IS applied during HAZID study</td>
<td>22</td>
</tr>
<tr>
<td>Table 9</td>
<td>Example of IS applied during HAZOP study</td>
<td>23</td>
</tr>
<tr>
<td>Table 10</td>
<td>Example of problems caused by poor documentation of ISD features</td>
<td>25</td>
</tr>
</tbody>
</table>

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Illustration of effectiveness of IS hierarchy of controls</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Benefits of ISD early in the design stages (illustrative)</td>
<td>13</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Illustrative risk matrix</td>
<td>21</td>
</tr>
<tr>
<td>Figure A.1</td>
<td>Example application of effectiveness of IS hierarchy of controls to a hazardous event</td>
<td>27</td>
</tr>
<tr>
<td>Figure B.1</td>
<td>ISD stages flowchart showing IS interventions</td>
<td>28</td>
</tr>
<tr>
<td>Figure C.1</td>
<td>Process for conducting inherent safety workshop</td>
<td>29</td>
</tr>
</tbody>
</table>
FOREWORD

The greatest opportunities to reduce risks from process facilities with potential for harm to people and/or the environment occur during the design. The principles of inherent safety in design (ISD) are well established but are often not systematically applied.

This publication is aimed at project leaders and provides encouragement and guidance on the practical application of ISD during the early stages of design in order to gain maximum benefits in terms of reducing both hazards and life cycle costs.

This publication addresses the lack of tools to identify potential ISD improvements, particularly during the early conceptual design stage where potential benefits are greatest. Setting ISD goals for the project during this stage and carrying out an ISD workshop should make a significant contribution towards safer facilities in the future. In time and as technology progresses, serious process safety incidents should be eliminated at the ‘drawing board’, rather than relying on ‘add-on’ safety systems that can and do fail, revealing weaknesses in the basic process design.

Traditional process safety approaches have often required ‘add-on’ risk safety systems that are costly to install and maintain. By comparison, ISD provides the opportunity to eliminate hazards or reduce their severity or likelihood by better design, with the potential of reducing overall capital expenditure (CAPEX) and operating expenditure (OPEX). ISD should promote a culture of challenging the need for designs that rely on ‘add-on’ safety systems, by confirming why they are needed, and how the need could be avoided by improving the basic process design.

The first edition of this publication (Guidance for safer design of offshore installations: An overview) was also sponsored by the GB Health & Safety Executive (HSE) and UK Offshore Operators Association (UKOOA), and aimed to reduce the occurrences of adverse findings in design safety cases for the UK offshore oil and gas sector. The scope of this second edition is broadened to large and small organisations in the global energy industry, including offshore production platforms, and onshore facilities such as petroleum refineries, bulk fuel storage installations, and power generation stations.

The information contained in this document is provided for general information purposes only. Whilst the EI and the contributors have applied reasonable care in developing this publication, no representations or warranties, expressed or implied, are made by the EI or any of the contributors concerning the applicability, suitability, accuracy or completeness of the information contained herein and the EI and the contributors accept no responsibility whatsoever for the use of this information. Neither the EI nor any of the contributors shall be liable in any way for any liability, loss, cost or damage incurred as a result of the receipt or use of the information contained herein.

The EI welcomes feedback on its publications. Feedback or suggested revisions should be submitted to:

Technical Department
Energy Institute
61 New Cavendish Street
London, W1G 7AR
e: technical@energyinst.org
ACKNOWLEDGEMENTS

This is dedicated to the memory of Trevor Kletz (1922 – 2013). His contribution to improved awareness of process safety is legendary throughout the world, most famously for introducing IS principles to the process industry during the 1970s with his motto ‘What you don’t have, can’t leak’.

Graeme Ellis (ABB Consulting) updated this publication under the technical direction of the EI Process Safety Committee which comprised during the project:

- Martin Ball Bossiney Consulting Group
- David Bleakley ConocoPhillips
- John Brazendale Health and Safety Executive
- John Briggs Kuwait Petroleum International
- Ian Buckland Health and Safety Executive
- Gus Carroll Centrica
- Jonathan Carter Marsh Ltd
- Paul McCulloch E.ON UK
- Peter Davidson UK Petroleum Industry Association Ltd
- Dr David Firth Chilworth Technology Ltd./DEKRA
- Peter Gedge (Chairperson) BP Exploration Operating Company Limited
- John Henderson Chicago Bridge and Iron/Lummus (representing British Chemical Engineering Contractors’ Association (BCECA))
- King Lee (Vice-Chairperson) Lloyd’s Register
- Seeraj Nair Chevron
- Peter O’Toole Tullow Oil plc
- John Pond Independent Consultant
- Dr Niall Ramsden Resource Protection International
- Andrew Robertson Nexen
- Dr Mark Scanlon Energy Institute
- Don Smith ENI UK
- Toby St Leger ConocoPhillips

The Institute wishes to record its appreciation of the work carried out by the author and also its gratitude for the valuable contributions made by Process Safety Committee members during the course of the project. In addition, the EI acknowledges the following who provided significant comments during the stakeholder technical review (in particular, those members of the Oil and Gas UK Major Hazards Forum and the BCECA Design Safety and Environment Committee):

- Lee Allford European Process Safety Centre
- Andy Bolsover DNV GL
- Adrian Bunn KBR
- Paul Davison Amec
- David Edwards Granherne Limited
- Dave Fargie BP Exploration Operating Company Limited
- Richard Gowland European Process Safety Centre
- David Mansfield ESR Technology
- Dr John Morgan DNV GL
- Dr Andy Rushton ESR Technology
- Jayadevan Vellani Safetec
- Howard Williams Essar Oil UK

Dr Mark Scanlon managed the project and technically edited the publication.